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Abstract: The decades-long Clouds and Earth’s Radiant Energy System (CERES) Project includes 8 
both cloud and radiation measurements from instruments on the Aqua, Terra, and Suomi National 9 
Polar-orbiting Partnership (SNPP) satellites. To build a reliable long-term climate data record, it is 10 
important to determine the accuracies of the parameters retrieved from the sensors on each satellite.   11 
Cloud amount, phase, and top height derived from radiances taken by the Visible Infrared Imaging 12 
Radiometer Suite (VIIRS) on the SNPP are evaluated relative to the same quantities determined 13 
from measurements by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the 14 
Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) spacecraft. The ac- 15 
curacies of the VIIRS cloud fractions are found to be as good as or better than those for the CERES 16 
amounts determined from Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) data 17 
and for cloud fractions estimated by two other operational algorithms. Sensitivities of cloud fraction 18 
bias to CALIOP resolution, matching time window, and viewing zenith angle are examined. VIIRS 19 
cloud phase biases are slightly greater than their CERES MODIS counterparts. A majority of cloud 20 
phase errors are due to multilayer clouds during the daytime and supercooled liquid water clouds 21 
at night. CERES VIIRS cloud-top height biases are similar to those from CERES MODIS, except for 22 
ice clouds, which are smaller than those from CERES MODIS. CERES VIIRS cloud phase and top 23 
height uncertainties overall are very similar to or better than several operational algorithms, but fail 24 
to match the accuracies of experimental machine learning techniques. The greatest errors occur for 25 
multilayered clouds and clouds with phase misclassification. Cloud top heights can be improved 26 
by relaxing tropopause constraints, improving lapse-rate to model temperature profiles, and ac- 27 
counting for multilayer clouds. Other suggestions for improving the retrievals are also discussed.    28 

        29 
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 33 

1. Introduction 34 
Since 1998, the Clouds and Earth’s Radiant Energy System (CERES) Project has been 35 

generating climate data records (CDRs) consisting of Earth radiation budget parameters 36 
and cloud properties [1,2]. These quantities are based on the interpretation of broadband 37 
and narrowband radiance measurements taken by radiometers and imagers on several 38 
satellites. Currently, the CERES broadband radiometers operate on four satellites, Terra, 39 
Aqua, the Suomi National Polar-orbiting Partnership (SNPP) platform, and NOAA-20. 40 
The last three are in Sun-synchronous orbits with equatorial crossing times near 1330 LT, 41 
while Terra crosses the Equator around 1030 LT. SNPP and NOAA-20 carry the imager, 42 
Visible Infrared Imaging Radiometer Suite (VIIRS) [3], while the other two have the MOD- 43 
erate-resolution Imaging Spectroradiometer (MODIS). The imagers are used to estimate 44 
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cloud properties coincident with the CERES broadband measurements. It is important for 45 
the CERES CDRs that both the radiation and cloud parameters be not only consistent, on 46 
average, across platform, but they should also be of similar accuracy.  47 

The CERES SNPP VIIRS Edition 1 (CV1S) cloud properties were described and dis- 48 
cussed in Part 1 of this paper [4]. With some notable exceptions, the average results for 49 
most parameters were found to be reasonably consistent with the corresponding means 50 
from the CERES Aqua MODIS Edition 4 (CM4A) cloud products. Quantitative details of 51 
the differences are provided by [4]. The direct comparisons of the average CV1S and 52 
CM4A properties comprise a significant step toward evaluating their consistency. Deter- 53 
mining the instantaneous accuracy of the CV1S product and the sources of errors should 54 
provide additional information needed for improving the retrieved parameters in future 55 
editions and will aid enhancement of the consistency with the CERES MODIS cloud prop- 56 
erties in future editions. 57 

Over the past 16 years, retrievals of cloud parameters from the Cloud-Aerosol Lidar 58 
with Orthogonal Polarization (CALIOP) on the Cloud Aerosol Lidar and Infrared Path- 59 
finder Satellite Observation (CALIPSO) spacecraft [5] have served as a cloud-truth refer- 60 
ence for assessing several key cloud properties determined from passive satellite meas- 61 
urements (e.g., [6-18]). Recently, [19,20] employed the CALIOP products along with 62 
CloudSat Cloud Profiling Radar (CPR) data [21] to determine the accuracy of several 63 
CM4A cloud properties. This paper applies the same methods used for CM4A to evaluate 64 
the uncertainties in many of the same parameters but retrieved with the CV1S algorithms. 65 
The comparisons will then be examined to determine the instantaneous consistency with 66 
the CM4A uncertainties, the accuracy of CV1S relative to other algorithms, and the 67 
sources of the differences between CV1S and CALIOP. 68 

2. Materials and Methods 69 
The instantaneous CV1S cloud properties are matched with CALIOP cloud profiles 70 

to evaluate the CV1S cloud and phase amounts, cloud-top height, and cirrus cloud optical 71 
depth, and ice water path for the same time period used by [19] for the CM4-CALIPSO 72 
comparisons: January, April, July, and October (JAJO), 2015-2016. 73 
2.1 Data  74 
2.1.1 CERES VIIRS Edition 1 Cloud Products 75 

The CERES cloud products are based on analyses of multiple VIIRS channel radi- 76 
ances that are sampled from the original VIIRS images. The VIIRS channel resolutions are 77 
either 750 m or 375 m and CERES uses radiances from both types of channels. To reduce 78 
processing and storage, CERES samples the 750-m (375-m) VIIRS data at every fourth 79 
(eighth) pixel and every other (fourth) scan line to yield an effective nominal resolution of 80 
6 km x 1.5 km. Thus, along the track, each pixel represents a distance of 1.5 km.  81 

Each pixel is classified as clear or cloudy. If the latter, cloud phase is determined as 82 
liquid, ice, or no retrieval. If liquid or ice, the cloud effective temperature CET, the cloud 83 
optical depth COD, and the particle effective radius CER are retrieved. These three quan- 84 
tities are employed to estimate the cloud effective and top heights, CEH and CTH, respec- 85 
tively, along with the cloud physical thickness and base height. All clouds in a given pixel 86 
are assumed to be single-layered in the retrieval. An experimental technique was also 87 
used to detect multilayered (ice over water) clouds and their properties. While the multi- 88 
layer results are included in the standard CERES Single Satellite Footprint product, they 89 
are experimental and are not examined here. The algorithms and processes used to re- 90 
trieve cloud properties from the VIIRS data are given in [4].   91 
2.1.2 CALIPSO Data 92 

The CALIOP Release 4.20 Vertical Feature Mask (VFM) and Cloud Layers products 93 
[22, 23] are used to assess cloud fraction, CTH, and cloud top thermodynamic phase [24], 94 
and to identify cloud layering. The Cloud Layers product contains cloud information 95 
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determined for five horizontal averaging (HA) distances of 1/3, 1, 5, 20, and 80 km. The 96 
lower resolution products comprise averages of the 1/3-km lidar backscatter intensity pro- 97 
files over lengthening horizontal distances to detect very faint, very low optical depth 98 
clouds. The CALIOP cloud optical depth [25], CODC, minimum decreases with increasing 99 
HA distance. Because the 5-km Cloud Layers product lacks information for clouds de- 100 
tected at HA < 5 km, the 1/3- and 1-km Cloud Layers products are also incorporated in the 101 
collocating process so that clouds from all HA are represented in the resulting matched 102 
dataset to facilitate analyses based on HA. As the matched dataset includes the 1/3- and 103 
1-km data, the cloud fraction, CFC, in a given 5-km CALIOP footprint can range from 0.0 104 
– 1.0. The subscript, C, indicates a CALIOP quantity or retrieval. The cloud-layer top 105 
heights and bases detectable by CALIOP along with their retrieved optical depths are also 106 
included in the matched dataset. CODC represents the cumulative optical depth of all lay- 107 
ers having a retrieval. It is typically limited to values less than 5.0 because the lidar signal 108 
is usually attenuated at greater optical depths.  109 

All sampled VIIRS pixels within 2.5 km of the center of each 5-km segment of the 110 
CALIPSO ground track were matched to that segment whenever it was within ±2.5 min 111 
of the VIIRS observations. Matches were also made for larger time intervals to examine 112 
matching and view angle dependencies. Because the CERES VIIRS data are sampled, this 113 
results in only 1-5 VIIRS pixels for a given CALIOP 5-km pixel. In this study, any cloud 114 
layers detected only with the 20-km or 80-km averaging are, as a default, treated as being 115 
cloud free, unless otherwise noted. In general, a cloud that is only detectable at the lowest 116 
CALIOP resolutions is less likely to be noticed in passive imager data. However, this re- 117 
duced sensitivity to the thinnest clouds will be examined by comparing the VIIRS retriev- 118 
als to lower resolution CALIOP properties.  119 

The SNPP is in a Sun-synchronous orbit at an altitude of 834 km with a 1330 LT cross- 120 
ing time. Its orbit has a slightly longer period and greater altitude than both Aqua and 121 
CALIPSO, but the same nominal equatorial crossing time. Thus, it has a significant num- 122 
ber of contemporaneous views with both Aqua MODIS and CALIPSO, but often with dif- 123 
ferent viewing zenith angles (VZA). The CALIPSO view is 3° from nadir, while the 124 
MODIS views matched with CALIPSO are between about 0° and 18° off nadir, because 125 
Aqua and CALIPSO are in nearly the same orbits. The VIIRS VZA is partially a function 126 
of the scan time difference between the VIIRS and CALIOP views of the same location. 127 
For the 5-min time window considered here, VZA varies from 0° to 45°. Matches between 128 
Aqua MODIS and CALIOP data are typically within 3 min or less. 129 

Because of the VZA differences between VIIRS and CALIOP, the VIIRS data are ad- 130 
justed for parallax by adjusting the location of the pixels according to CV1S CTH retriev- 131 
als. While this adjustment will be satisfactory for overcast, single-layered (SL) cloud sys- 132 
tems, it cannot always account for the various parallax corrections required for different 133 
layers of clouds in a given CALIOP pixel. Additionally, cloud motion is not considered, 134 
so matched views can have increasingly different components as the matching window 135 
enlarges. 136 
2.2 Comparison Process and Statistics 137 

Cloud detection is evaluated following the methods of [20]. Two datasets are em- 138 
ployed to examine cloud fraction. In one, the 50/50 case, a cloudy outcome is determined 139 
if either VIIRS cloud fraction, CFV, or the CALIOP cloud fraction, CFC, is greater than or 140 
equal to 0.50. The second case, 0/100, requires that both VIIRS and CALIOP be completely 141 
clear or cloudy. The 0/100 data comprise a subset of the 50/50 cases. A third dataset, which 142 
includes CALIOP data at all resolutions, is used to explore the sensitivity to optically thin 143 
clouds. While it is assumed that VIIRS is unable to detect very weakly scattering/absorb- 144 
ing clouds that are detected at the very low resolutions by CALIOP, it is important to 145 
know which clouds are not detected and how often very low optical-depth clouds are 146 
detected.  147 
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Uncertainties in cloud phase are examined by comparing the phase selections from 148 
CV1S to those from CALIOP. Only those matches for which CALIOP identified the pres- 149 
ence of a single cloud phase in the column are used for the phase comparisons. Multiple 150 
cloud layers may be present, but it was required that all layers have the same phase or at 151 
least that one phase clearly predominates. The CALIOP algorithms sometimes result in 152 
indeterminate “unknown” phase, but that does not necessarily disqualify the data from 153 
the comparisons here if the presence of adjacent liquid or ice layers made it possible to 154 
infer a liquid or ice cloud phase. 155 

Both cloud fraction and phase evaluations are based on parameters derived from the 156 
confusion matrix illustrated in Table 1. The true and false negatives outcomes are Tn and 157 
Fn, respectively, while their sum, n, is the total number of CV1S negatives. For the phase 158 
evaluation, negative indicates a liquid cloud, while negative refers to clear for the cloud 159 
fraction assessment. Fp and Tp indicate false and true positive outcomes, and p is the total 160 
number of CV1S positive results. A positive phase bias occurs when CV1S overestimates 161 
(underestimates) the ice (liquid water) fraction, while a positive CF bias occurs when 162 
CV1S overestimates cloud amount. 163 

Table 1. Confusion matrix for evaluating cloud fraction (phase).  164 

VIIRS CALIPSO  
 Clear (liquid) Cloudy (ice) Sum 

Clear (liquid) Tn Fn n 
Cloudy (ice) Fp Tp p 

 165 

Two approaches are employed here to interpret the confusion matrix. To facilitate com- 166 
parison with results from various studies, the method described by [19] and [20] is pre- 167 
sented in the results section. It is designated the fraction correct method, FCM. For com- 168 
parison with more recent analyses using VIIRS data, the technique of [26], denoted as the 169 
balanced accuracy method BAM, is presented in the discussion section. The approaches 170 
have some overlap, but employ different terminology.  171 

The relevant FCM parameters are defined as follows. 172 

Fraction Correct:   FC = (Tp + Tn) / (n + p). 173 

Hit Rate:     HR = Tp / (Fn + Tp). 174 

False Alarm Rate:  FAR = Fp / p. 175 

False Alarm Rate, water: FARw = Fn / n. 176 

False Alarm Rate, ice:  FARi = Fp / p. 177 

Bias:         B = (Fp – Fn) / (n + p). 178 

                     Hansen-Kuiper Skill Score: HKSS = ((Tp x Tn) – (Fp x Fn)) / ((Tp + Fn) x (Fp + Tn)).          179 

The same matrix variables are used to compute the following BAM parameters. 180 

True positive rate:  TPR = Tp / (Tp + Fn).    (1) 181 

True negative rate: TNR = Tn / (Tn + Fp).    (2) 182 

Accuracy:   ACC = (Tp + Tn) / (n + p).   (3) 183 

Balanced accuracy: BACC = (TPR +TNR) /2.   184 

occurs when CV1S overestimates (underestimates) the ice (liquid water) fraction, while a 185 
positive CF bias occurs when CV1S overestimates cloud amount. 186 

Note, that ACC is the same as FC, also referred to as probability of detection (e.g., 187 
[20]) and hit rate (e.g., [19]). Here, hit rate refers to the fraction of clouds detected by 188 
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CALIOP that are identified by the passive sensor. Other statistics computed include the 189 
number of pixels N, the fraction of cloudy pixels used, and the Hanssen-Kuipers’ skill 190 
score (HKSS) defined in [27]. Values of HKSS range from −1 to 1, where 1 signifies that all 191 
pixels were correctly identified and scores less than or equal to zero indicate no skill. 192 
Cloud phase fractions and biases are also computed. For the other parameters, such as 193 
cloud-top height, differences for each pixel are computed and averaged for a given cate- 194 
gory. The standard deviations of the differences (SDD) are also determined. 195 

3. Results 196 
3.1. Cloud amount  197 

Figure 1 plots the global distributions of the CV1S and CALIOP cloud fractions from 198 
all of the matched data along with their differences. During the day, CFV (Figure 1a) and 199 
CFC (Figure 1b) appear very similar, except for areas over land where the CFC map is red- 200 
der than that from VIIRS. This difference is more easily seen in Figure 1c where the differ- 201 
ences over some regions, such as northern South America and eastern Africa reach nearly 202 
-0.1. The absolute differences are smallest over many tropical marine areas and maritime 203 
midlatitude storm tracks. At night, the distributions of CFV (Figure 1d) and CFC (Figure 204 
1e) have the same patterns, but it is evident that CFV < CFC in many areas. This is high- 205 
lighted by the differences in Figure 1f, where large areas of deeper blue occur over the  206 

 207 
Figure 1. Mean daytime (top) and nighttime (bottom) cloud fractions from CV1S (left) and CALIPSO 208 
(HA £ 5 km; center) and their differences (right) using all matched data from JAJO 2015-2016.  209 

tropical and subtropical oceans as well as the polar regions. Over desert areas, CFV tends 210 
to overestimate CFC. The smallest differences in magnitude are found over parts of Siberia 211 
and the Southern Ocean. 212 

These differences are further summarized in the zonal averages (Figure 2). Figure 2a 213 
reveals that CFV is only slightly less than CFC for HA < 5 km everywhere during the day, 214 
except for the northern polar regions where the difference approaches -0.05. On average, 215 
the daytime difference is -0.030, but varies from -0.01 to -0.08 over the HA range. At night 216 
(Figure 2b), the discrepancy between CFV and CFC is readily seen for all HA’s with mean 217 
differences between -0.02 and -0.116 for HA = 1 km and HA < 80 km, respectively. The 218 
VIIRS and CALIOP averages diverge most over the polar regions and the southern tropics.  219 
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 220 
Figure 2. Mean zonal cloud fractions from CV1S and CALIOP for four horizontal averaging scales, 221 
JAJO 2015-16, using all matched data. 222 

Table 2 summarizes the cloud mask comparisons to CALIOP (HA £ 5 km) for the 223 
0/100 and 50/50 cases (in parentheses). In computing the global values, all pixels are given 224 
equal weight. However, because of the more frequent sampling of the polar regions rela- 225 
tive to their area, the influence of the polar areas on the global means is greater than war- 226 
ranted. Thus, more representative averages are computed by using areal weighting of the 227 
polar and nonpolar means. For example, in Table 2, the polar regions account for 28% - 228 
37% of the pixel-weighted global means, while representing only 13% of the global surface 229 
area. The areal weighting produces improved global averages as might be expected since 230 
the polar statistics are uniformly worse than their nonpolar counterparts. 231 

Over all areas, the fraction correct and hit rate exceed 0.9 for the daytime 0/100 cases 232 
(Table 2). Using cloud detection biases B as rough estimates for biases of cloud fraction, 233 
the CV1S cloud fraction, CFV, is less than its CALIOP counterpart, CFC, over polar regions 234 
by 0.024, while it is only half of that over nonpolar surfaces. Globally, daytime CFV is 0.013 235 
less than CFC. These  236 

Table 2. Cloud detection metrics determined from confusion matrices of matched CERES SNPP 237 
VIIRS Ed1a and CALIOP (HA < 5 km) pixels, JAJO 2015 and 2016 for 0/100 cases and 50/50 cases, 238 
shown in parentheses. 239 

Day FC HR Bias FAR HKSS N x 103 

Nonpolar 0.952 (0.896) 0.959 (0.914) -0.011 (-0.012) 0.026 (0.069) 0.885 (0.765) 220 (272) 

Polar 0.923 (0.899) 0.923 (0.902) -0.024 (-0.029) 0.041 (0.057) 0.831 (0.779) 99 (108) 

Global, All 0.943 (0.897) 0.948 (0.910) -0.015 (-0.017) 0.030 (0.066) 0.868 (0.769) 318 (380) 

Global, All* 0.948 (0.896) 0.954 (0.912) -0.013 (-0.014) 0.028 (0.067) 0.878 (0.767) - 

Night       

Nonpolar 0.927 (0.870) 0.941 (0.890) -0.018 (-0.035) 0.037 (0.070) 0.798 (0.697) 213 (271) 

Polar 0.804 (0.764) 0.809 (0.777) -0.080 (-0.068) 0.091 (0.127) 0.551 (0.476) 126 (151) 

Global, All  0.881 (0.833) 0.913 (0.846) -0.041 (-0.050) 0.055 (0.090) 0.698 (0.616) 339 (422) 

Global, All * 0.911 (0.856) 0.924 (0.875) -0.026 (-0.039) 0.044 (0.077) 0.765 (0.669) - 
* Estimated as area-weighted average of polar and nonpolar surfaces, instead of by number of sam- 240 
ples. 241 
mean differences are not the same as those in Figure 2 because the 50/50 cases apparently 242 
have more cloud cover for some of the “clear” scenes than clear portions have for the 243 
“cloudy” cases. For example, the average cloud cover in the partly cloudy CALIOP cases 244 
deemed clear for the 50/50 cases (CFc < 0.5) could be 30%, but for the mostly cloudy cases 245 
(CFC > 0.5), it could be 95%, an imbalance of 25% that would yield a mean cloud amount 246 
for the binary 50/50 cases that is less than the true cloud amount. Clear pixels are 247 
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infrequently mistaken as cloudy during the day, as FAR < 0.03 overall and equal to 0.04 248 
over polar regions. During daytime, all HKSS’s exceed 0.8 with a daytime global mean of 249 
0.868 for the ~318 thousand 0/100 daytime pixels. 250 

Introducing another 62,000 pixels to obtain the 50/50 dataset, shown in parentheses, 251 
degrades all of the daytime metrics. Globally, FC decreases by ~0.05 compared to the 0/100 252 
cases, while the bias drops by 0.002. The HKSS values are all less than 0.8, but the hit rates 253 
remain above 90%. The relatively minor change in the bias and greater changes in the 254 
other parameters suggest that using the daytime 50/50 criterion affects the random error 255 
but not the mean error in the comparison. This is not surprising given the matching un- 256 
certainties and the inhomogeneous nature of the 50/50 pixels. The adjusted global aver- 257 
ages for both the 0/100 and 50/50 cases are minimally different from the equal-pixel means 258 
during the daytime. 259 

Overall, the nocturnal CFV is 0.026 less than CFC for the 0/100 matches. HR remains 260 
high for nonpolar areas but drops to 0.809 for polar regions. In absolute terms, the noctur- 261 
nal biases are greater than their daytime counterparts, particularly over polar surfaces. All 262 
of the statistics are worse at night for both the 0/100 and 50/50 cases, especially for the 263 
polar pixels, which have corresponding FC values of 0.804 and 0.764, respectively. The 264 
smallest reduction in FC occurs over the ocean surfaces where the surface skin tempera- 265 
ture is more accurately characterized than for other surfaces (not shown). All of the HKSS 266 
values are less than 0.8 at night, reaching as low as 0.551 (0.476) for 0/100 (50/50) polar 267 
areas. At night, the adjusted global averages for Table 2 represent a significant improve- 268 
ment over their unadjusted counterparts, mainly because the extremely different polar 269 
values have reduced influence on the global means. Unlike the daytime case, the inclusion 270 
of the non-overcast pixels at night worsens the global bias, as well as all of the other pa- 271 
rameters. 272 

The results presented above are for HA < 5 km. At lower HA distances, the CALIOP 273 
picks up fewer optically thin clouds increasing all of the FCM parameters, while the op- 274 
posite is true for longer HA lengths. Figure 3 plots values for several of the variables in 275 
Table 2 for HA distances ranging from 1 km to 80 km. The CALIOP resolution increases 276 
from left right. The parameters are computed 277 

 278 
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Figure 3. Dependence of CV1S cloud detection metrics on CALIOP horizontal averaging, JAJO, 279 
2015-2016, for 0/100 matched pixels.      280 

separately for snow and ice free (SIF) land and ocean and for snow and ice-covered sur- 281 
faces (SIC). FC (Figure 3a) and the bias (Figure 3b), are greatest for daytime ocean, and 282 
least for clouds over snow and ice at night. They also decrease with decreasing resolution. 283 
For daytime ocean, FC drops from ~0.96 at HA < 1 km to ~0.925 for HA < 80 km, and over 284 
nocturnal SIC surfaces it decreases from 0.78 to 0.73. The bias falls from +0.01 to -0.05 for 285 
daytime ocean. The bias drop is more precipitous for nighttime SIC, ranging from about - 286 
0.01 to -0.16, presumably because the very thin clouds detected at longer HA distances are 287 
either more frequent or harder to detect using only thermal channels. Conversely, the FAR 288 
values are greatest for nighttime SIC and least for daytime ocean surfaces (Figure 3c). Like 289 
the other two parameters, FAR rises as the HA lengths decrease. The hit rate variations 290 
with CALIOP resolution (Figure 3d) are similar to their FC counterparts but have gener- 291 
ally higher values.  292 
3.2. Cloud phase  293 
Cloud phase is validated by comparing the phase selections from CV1S to those from CA- 294 
LIOP in various ways. Using all of the collocated data, Figure 4 shows the mean zonal 295 
water and ice cloud amounts from CV1S and CALIOP for day and night. Except for areas 296 
south of 65°S and between 15°S and 30°S, CV1S tends to identify more pixels as liquid 297 
during the day than CALIOP (Figure 4a). On average, CFvw is 0.035 greater than CFcw for 298 
HA < 5 km. For ice clouds, CFvi is less than CFci everywhere except south of 65°S (Figure 299 
4b) with a global difference of -0.073 for HA < 5 km. Although the overall daytime aver- 300 
ages roughly equal those from CM4A, there are some differences in certain zones (see 301 
Figure 1 of [19]). At night, the average CFvw is very close to CFcw between 15°S and 45°N, 302 
but is substantially lower than CFcw in all other zones (Figure 4c), more so than for CM4A 303 
(Figure 2, [19]). The latter is 0.047 less than CFcw, compared to 0.072 for CV1S. The reason 304 
for this drop in CFw for CV1S, discussed by [4], is mainly due a change in the nocturnal 305 
cloud detection algorithm, which was designed to minimize false cirrus detection. Instead, 306 
it missed low cumulus clouds. Better agreement is found for ice cloud fraction (Figure 4d). 307 
CFvi is slightly less than or relatively close to CFci between 45°S and 45°N. Poleward of 308 
45°, CV1S finds more ice    309 

 310 
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Figure 4. Average cloud-top phase cloud amount for CV1S and CALIOP pixels collocated within 311 
±15 min, JAJO 2015-2016.  312 

clouds than CALIOP for HA < 5 km. This is particularly true over the austral and boreal 313 
ice sheets (not shown). Globally, CFvi exceeds CFci by 0.005 at night.   314 

To explore the phase differences in more detail, the FCM parameters are summarized 315 
in Table 3 for all overcast (0/100 dataset) matches having a single cloud phase throughout 316 
the observed profile. Profiles having multiple cloud layers were included, but it was re- 317 
quired that all detected layers have the same phase or at least a predominant phase. For 318 
example, some cloud layers, particularly lower layers, may contain some amount of “un- 319 
known” phase, but the phase can be inferred from adjacent layers or profiles. Over non- 320 
polar snow/ice-free land and ocean, FC is 0.888 and 0.954, respectively, during the day. 321 
Over snow-covered surfaces, FC is similar to that over land, though the ice false alarm 322 
rate (FAR) is greater, while the water FAR is larger for snow-free land. Globally, daytime 323 
ice and water FARs differ by only 0.001, however, the water cloud amount is nearly dou- 324 
ble the ice amount, so the amount of false liquid clouds will almost be twice that for ice. 325 
The impact of the phase errors is evident in the zonal means plotted in Figure 4. For ex- 326 
ample, the daytime biases in general have negative values, indicating an overabundance 327 
of liquid cloud identifications.  328 

At night, FC values are about 0.05 lower than for day, and biases and ice FARs are signif- 329 
icantly higher. Figure 4d indicates that ice cloud fraction is overestimated in the polar 330 
regions at night, and Table 3 shows that the polar regions indeed have the largest biases 331 
and ice FARs. CV1S ice cloud amount is slightly less than CALIPSO in the tropics, and 332 
nearly equal in the midlatitudes. CV1S water cloud fraction is underestimated at night in 333 
the midlatitudes and polar regions, but equal to that of CALIPSO in the tropics (Figure 334 
4c). Overall, the CV1S liquid amount is 0.062 less than CALIPSO for HA £ 5 km. This 335 
underestimation of liquid cloud fraction results in lower water FAR for night compared 336 
to day (Table 3). 337 

Table 3. CV1S cloud phase validation metrics for overcast (0/100 dataset) matches having a single 338 
phase or predominate phase using HA < 5 km data. 339 

Day Fraction 
Correct Bias Ice FAR Water FAR HKSS Number sam-

ples (x 103) 

Global, All surfaces 0.931 -0.019 0.068 0.069 0.844 132 

Nonpolar land, SIF 0.888 -0.079 0.034 0.182 0.791 19 

Polar land, SIF 0.920 -0.038 0.073 0.082 0.789 4 

Nonpolar ocean, SIF 0.954 -0.005 0.055 0.040 0.900 75 

Polar ocean, SIF 0.941 +0.005 0.160 0.034 0.820 10 

Global, SIF 0.940 -0.018 0.056 0.062 0.866 108 

Global, SIC 0.892 -0.023 0.131 0.097 0.746 25 

Nighttime       

Global, All surfaces 0.883 0.079 0.185 0.040 0.780 141 

Nonpolar land, SIF 0.854 0.025 0.140 0.155 0.690 18 

Polar land, SIF 0.869 0.099 0.219 0.033 0.762 3 

Nonpolar ocean, SIF 0.909 0.060 0.186 0.026 0.840 72 

Polar ocean, SIF 0.883 0.098 0.278 0.015 0.816 10 

Global, SIF 0.896 0.059 0.185 0.040 0.809 103 
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Global, SIC 0.849 0.135 0.186 0.035 0.596 38 

 340 
To determine the sources of the differences, the classifications of clear scenes and ice 341 

and liquid clouds were determined for a variety of conditions defined by the CALIPSO 342 
profiles. The results are shown in Figure 5. Each bar represents the number of pixels hav- 343 
ing a given CALIPSO classification, while each color in the bar represents a CV1S classifi- 344 
cation as a fraction of all pixels in the category. For, example, the CALIPSO clear classifi- 345 
cation during the day (Figure 5a) had 95,844 pixels. Of those, CV1S classified 94% as clear, 346 
3% as water cloud and 3% as ice cloud. At night (Figure 5b), the fraction of correct clear 347 
pixels drops to 85%, while the false ice cloud amount is twice the false liquid amount. 348 
Considering all of the blue portions of the last five bars of Figure 5a reveals that the bulk 349 
(69%) of the ice-cloud underestimate relative to CALIPSO during the day is due to non- 350 
opaque cirrus over liquid cloud scenes, while at night, the ice cloud overestimate is due 351 
to misclassification of SL water clouds and clear pixels. As a greater part of the overesti- 352 
mate occurs in the polar regions at night, the result is not surprising. Most of the polar 353 
water clouds are supercooled and it is difficult to distinguish clear from cloudy scenes in 354 
low thermal contrast situations. These results are similar to those for CM4A. 355 
3.3. Cloud top height 356 

Cloud-top comparisons were performed for two sets of liquid and ice clouds: (1) sin- 357 
gle-layer clouds as indicated by asterisks in Figure 5, and (2) all liquid and all ice clouds 358 
as indicated by the brackets. Furthermore, the CV1S and CALIOP cloud-top phases must 359 
be the same unless otherwise noted. The CALIOP cloud-top, CTHC, is taken as the top of 360 
the highest layer in the atmospheric column.  361 

 362 
Figure 5. CV1S 0/100 scene type fraction for various classifications as determined from CALIOP HA 363 
< 5 km data for collocations with ±2.5 min during JAJO 2015-2016. * denotes single-layer, single 364 
phase clouds. Brackets indicate all CALIOP classifications treated as liquid-phase (blue) and ice- 365 
phase (red) clouds in height and COD discussion.   366 
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3.3.1. Liquid clouds 367 
Figure 6 plots matched CV1S and CALIPSO CTH values for overcast 0/100 liquid 368 

water clouds. The CV1S heights, CTHV, for all matches having liquid cloud tops (catego- 369 
ries within the blue bracket in Figure 5) are too low, on average, by 0.35 and 0.10 km com- 370 
pared to CTHC during the day (Figure 6a) and night (Figure 6b), respectively. For SLP 371 
liquid-water clouds, the respective biases are 0.02 km (Figure 6c) and 0.17 km (Figure 6d). 372 
The correlation coefficients (R) are greater and the SDDs are much lower for the SLP 373 
clouds than for all liquid clouds.  374 

 375 
Figure 6. CV1S versus CALIOP cloud-top heights for 0/100 liquid clouds, JAJO 2015-2016, Top: All 376 
liquid-dominant clouds, Bottom: Single-layer liquid clouds only. Left: day, Right: night. 377 

The differences, CTHV - CTHC, for liquid clouds are broken down by surface type in Table 378 
4 for the 0/100 cases. During the day over snow/ice (SIC) regions, the bias for SLP clouds 379 
is 0.09 ± 0.87 km. The SLP bias and SDD are smallest for snow-free (SIF) ocean regions, 380 
while SDD is greatest over snow-free SIF land surfaces. For all liquid clouds, the magni- 381 
tudes of the bias and SDD are least for SIC areas, but the correlation is also lowest. Since 382 
SIF water surfaces predominate, the global statistics are closest to those for ocean. At 383 
night, CTHV overestimates CTHC by 0.16 km and 0.18 km over SIF ocean and land, respec- 384 
tively, for SLP clouds. The bias is greatest and correlation is smallest over SIC areas. The 385 
nocturnal SLP SDD values are similar to their daytime counterparts. If all liquid clouds 386 
are considered, the absolute biases at night are less than the daytime biases with global 387 
averages of -0.35 km and -0.10 km for day and night, respectively. Despite having the 388 
lowest correlation, the  389 

Table 4. Differences between CERES SNPP VIIRS Ed1a and CALIPSO cloud top heights for all over- 390 
cast (0/100) liquid clouds identified by CALIPSO, JAJO 2015 and 2016. Biases are computed as VIIRS 391 
– CALIPSO.  392 
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 393 
Figure 7. Regional mean cloud-top height differences between CV1S (CTHV) and CALIOP (CTHC) 394 
for 0/100 liquid water clouds, JAJO 2015-2016. Left: Single-layer (SL), right: all with liquid tops, top: 395 
day, bottom: night. 396 

mean height biases and SDDs are lowest over SIC regions. The changes between SLP and 397 
all liquid CTHs are somewhat greater during the day than at night. Overall, the SLP and 398 
all-liquid cloud biases and SDDs in Table 4 are similar to those found for CM4A (Yost et 399 
al. 2021) during the day and at night. 400 

Figure 7 maps the regional mean differences, CTHV – CTHC, for SLP and the liquid 401 
dominant clouds. Despite using a 30-min window (± 15 minutes) for collocation, the re- 402 
sults are somewhat noisy but sufficient to discern some patterns. Except for some high- 403 
latitude regions, the daytime SLP differences (Figure 7a) are mostly between -0.5 km and 404 
0.5 km. At night (Figure 7c), areas with differences exceeding 0.5 km are much more nu- 405 
merous, particularly south of 30°S. When all types of water clouds are included, there is 406 
little change over the cores of the subtropical marine stratocumulus areas during the day 407 
(Figure 7b), but elsewhere, the differences are mainly negative resulting in the mean 408 

 Single layer only All with liquid top 

Day Bias (SDD) 
[km]  R Number of 

Matches x 103 
Bias (SDD) 

[km] R Number of 
Matches x 103 

Land, SIF 0.05 (0.98) 0.86 6.5 -0.41 (1.37) 0.77 14.2 

Ocean, SIF 0.00 (0.74) 0.88 42.7 -0.38 (1.27) 0.77 62.4 

SIC 0.09 (0.87) 0.85 11.5 -0.24 (1.24) 0.70 19.5 

Global, All  0.02 (0.79) 0.88 60.7 -0.35 (1.28) 0.78 96.1 

Night       

Land, SIF 0.18 (0.94) 0.86 4.9 -0.17 (1.27) 0.79 8.0 

Ocean, SIF 0.16 (0.71) 0.80 38.5 -0.10 (1.11) 0.73 53.2 

SIC 0.21 (0.81) 0.76 6.3  0.00 (1.02) 0.68 9.3 

Global, All  0.17 (0.75) 0.83 49.7 -0.10 (1.12) 0.76 70.5 
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difference of -0.35 km listed in Table 4. A similar change is seen in the nocturnal differ- 409 
ences (Figure 7d), which include many more negative values and fewer means above 0.5 410 
km. The most negative areas are primarily found in the tropics, while the most persistent 411 
positive areas at night include the Antarctic ice shelf and the Arctic Ocean north of Europe.  412 
3.3.2. Ice clouds  413 

Comparisons are performed for non-opaque and opaque cloud columns separately. 414 
The former includes all clouds having a dominant ice phase top for which a return signal 415 
from the surface is observed in the CALIOP profile. This category can include single and 416 
multi-layer thin cirrus clouds and thin cirrus over thin low, liquid clouds. If a surface re- 417 
turn is not observed, then the cloud is designated an opaque cloud. In addition to opaque 418 
ice clouds, it can include thin cirrus over opaque water clouds. 419 

 Single-layer CTHs from CV1S are plotted against their CALIOP counterparts in Fig- 420 
ure 8 for SL, 0/100 non-opaque and opaque ice clouds. The opaque clouds are well-corre- 421 
lated during the day (Figure 8a) and at night (Figure 8c) with R = 0.87 and 0.84, respec- 422 
tively. The corresponding biases are -0.81 and -0.48, km. For non-opaque clouds, the scat- 423 
ter and the SDDs are greater both day (Figure 8b) and night (Figure 8d), while the corre- 424 
lations are smaller than their opaque counterparts. The magnitudes of the biases noticea- 425 
bly increased also. Most of the points far below the line for CTHC ~ 10 km are from polar 426 
regions, while some are from the midlatitudes. Horizontal features are common for CTHV 427 
> 12 km in most of the plots.   428 

 429 
Figure 8. CV1S versus CALIOP cloud-top heights for all 0/100 single-layer ice clouds, JAJO 2015- 430 
2016, Top: Daytime, Bottom: Nighttime. Left: opaque, Right: non-opaque. 431 

Table 5 lists the mean differences and associated statistics for non-opaque ice clouds. 432 
For SL clouds over the globe during the day, CV1S underestimates CTHC by 1.22 km, a 433 
0.7 km drop from the CM4A difference. Over SIC surfaces, the difference decreased by 434 
~0.9 km relative to the CM4A-CALIPSO analysis of [20]. The SDDs overall are also smaller 435 
for the CV1S retrievals, 2.2 km down from 2.6 km. The reason for this improvement is not 436 



Remote Sens. 2022, 14, x FOR PEER REVIEW 14 of 36 
 

 

entirely clear, but is likely due to the use of the brightness temperature difference between 437 
the VIIRS 11 and 12-µm channels instead of the MODIS 13.4-µm channel to adjust ice 438 
cloud heights when the infrared estimate of cloud effective height is significantly greater 439 
than the value from the VISST retrieval. For all ice clouds and surfaces, CTHV - CTHC = - 440 
1.33 ± 2.23 km, a value only slightly greater in magnitude than that for SL clouds. This 441 
difference can be compared to the mean of -1.87 ± 2.54 km from CM4A. Note, the correla- 442 
tion coefficients vary from 0.46 to 0.59 for SL clouds when the different surfaces are con- 443 
sidered separately. When combined, R increases to 0.69, presumably because the com- 444 
bined data provide a greater range of heights. A similar increase was found for all non- 445 
opaque cirrus clouds.  446 

The magnitudes of the differences in the CTHV non-opaque ice cloud top heights are 447 
smaller at night (Table 5, bottom), with an overall mean of -0.75 ± 2.10 km. This represents 448 
an improvement of 0.2 km in the bias over the CM4A results. If all ice clouds are consid- 449 
ered, the differences are -0.78 ± 2.34 km, only slightly greater in magnitude than for the SL 450 
case. The CM4A difference from [20] is -1.31 ± 3.07 km for CM4A. Unlike the daytime 451 
cases, the global average at night is more impacted by results over the SIC regions, pre- 452 
sumably because of the dominating presence of ice clouds during the polar night. The 453 
biases for SL clouds over snow free surfaces are only -0.26 km compared to -1.4 km for 454 
SIC areas. An area-based averaging such as that in Table 2 would yield a difference of -0.4 455 
km. A similar, but less dramatic effect is seen for the results for all ice clouds. It can be 456 
concluded that the CV1S top heights for non-opaque ice clouds are more accurate than 457 
their CM4A counterparts for both day and night. Again, the improvement relative to 458 
CM4A is likely due to the brightness temperature difference method used in CV1S to ad- 459 
just cloud heights. 460 

Table 5. Differences, SNPP VIIRS Ed1 – CALIPSO, cloud top heights for non-opaque ice clouds, 461 
JAJO 2015 and 2016. 462 

 463 
 464 

 465 
Opaque ice cloud-top height differences are listed in Table 6. For SL clouds, |CTHV - 466 

CTHC| < 1.00 km for all surfaces day and night. On average, it is -0.81 ± 1.28 km during 467 
the day and -0.48 ± 1.40 km at night. For all matches with ice top layers, the underestimates 468 
are larger, -1.24 ± 1.60 km and -0.89 ± 1.84 km during the day and night, respectively. The 469 
biases are greatest over ocean during the day and smallest at night. However, the 470 

 Single Layer Ice Only All with ice top 

Day Bias (SDD) 
[km]  R 

Number of 
Matches x 

10-3 

Bias (SDD) 
[km] R Number of 

Matches x 10-3 

Land, SIF -0.56 (1.96) 0.59 2.6 -0.85 (2.14) 0.67 4.5 

Ocean, SIF -1.44 (2.21) 0.53 6.0 -1.54 (2.28) 0.62 11.1 

SIC -1.35 (2.30) 0.46 2.6 -1.30 (2.14) 0.51 5.6 

Global, All  -1.22 (2.21) 0.69 11.2 -1.33 (2.23) 0.74 21.3 

Night       

Land, SIF -0.27 (2.01) 0.65 4.8 -0.55 (2.25) 0.71 9.1 

Ocean, SIF -0.26 (1.84) 0.68 8.8 -0.69 (2.28) 0.71 25.0 

SIC -1.40 (2.17) 0.64 10.3 -0.97 (2.43) 0.44 22.4 

Global, All  -0.75 (2.10) 0.73 23.9 -0.78 (2.34) 0.74 56.5 
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correlations are greater for the opaque clouds than for their optically thin counterparts. 471 
Although the nocturnal magnitudes are less than the CM4A differences, the daytime bi- 472 
ases are similar to those from CM4A (corrected CTH in Table IV of [20]). Surprisingly, the 473 
opaque ice CTH biases are not too different from those for the non-opaque clouds, except 474 
for daytime SLP clouds which see a reduction of ~0.1 km in the bias. The nocturnal, non- 475 
opaque height underestimates are actually smaller than the corresponding opaque cloud 476 
values at night for the SLP and all-layering cases. This is especially true for the SIF areas. 477 
Despite the relatively small differences in the biases, the non-opaque SDDs are signifi- 478 
cantly larger than their opaque counterparts for both SL-only and all ice cloud cases. 479 

Table 6. Differences, SNPP VIIRS Ed1 – CALIPSO, cloud top heights for opaque ice clouds, JAJO 480 
2015 and 2016. 481 

 482 
In the comparisons above, only matched data having the same cloud-top phase were 483 

considered. Thus, for the cases when ice clouds were mistakenly identified as liquid water 484 
clouds by CV1S, and vice versa, the retrieved cloud-top heights are likely subject to 485 
greater errors. To determine the uncertainty in CTH for all clouds regardless of phase 486 
accuracy, CTHV - CTHC was computed for all matched VIIRS and CALIPSO cloudy pixels. 487 
Histograms of the differences and the relevant statistics are given in Figure 9 for clouds 488 
over all surfaces. Both 50/50 and 0/100 cases are included for completeness. The latter is a 489 
subset of the former. Three probability distributions are shown in each graph: all clouds 490 
(gray), clouds with CTHC < 5 km (blue curve), and clouds with CTHC > 5 km (red). 491 

For the lower clouds, the average daytime differences are 0.13 ± 1.75 km and -0.01 ± 492 
1.35 km for the 50/50 (Figure 9a) and 0/100 (Figure 9b) cases, respectively. The correspond- 493 
ing biases for the higher clouds are much greater in magnitude: -2.48 ± 3.33 km and -2.62 494 
± 3.33 km. These larger biases and SDDs are primarily due to the inclusion of clouds with 495 
mismatched phases and other constraints. For example, the results given for daytime all- 496 
layer clouds in Tables 5-7 account for only 65% of the pixel matches in Figure 9b. Despite 497 
the large standard deviations, the biases remain small for low clouds. The daytime CV1S 498 
results for 0/100 are slightly improved from their CM4A counterparts, while 50/50 results 499 
are marginally worse. Overall, the CV1S and CM4A CTH errors are quite consistent.  500 

At night, the lower cloud heights are overestimated by 0.67 ± 2.04 km and 0.42 ± 1.53 501 
km for the 50/50 (Figure 9c) and 0/100 (Figure 9d) constraints, respectively. The greater 502 
uncertainty at night is expected because of the reduced amount of information available 503 
compared to that during daytime. These can be compared to 0.55 ± 1.84 km and 0.26 ± 1.29 504 
km for CM4A, indicating a decrease in accuracy at night. For the higher clouds, the corre- 505 
sponding values of CV1S DZt are -1.44 ± 3.21 km and -1.49 ± 3.15 km. They are considerably 506 

 Single Layer Ice Only All with ice top 

Day 
Bias (SDD) 

[km]  
R 

Number of 
Matches x 10-3 

Bias (SDD) 
[km] 

R 
Number of 

Matches x 10-3 

Land, SIF -0.47 (1.25) 0.86 5.2 -0.89 (1.53) 0.84 8.8 

Ocean, SIF -0.93 (1.27) 0.86 16.1 -1.35 (1.61) 0.83 29.7 

SIC -0.74 (1.29) 0.71 1.6 -1.13 (1.61) 0.63 4.2 

Global, All  -0.81 (1.28) 0.87 22.9 -1.24 (1.60) 0.84 42.7 

Night       

Land, SIF -0.38 (1.42) 0.84 3.8 -1.01 (2.01) 0.75 7.5 

Ocean, SIF -0.37 (1.27) 0.86 12.8 -0.83 (1.77) 0.78 27.4 

SIC --0.83 (1.61) 0.62 5.4 -0.96 (1.89) 0.59 11.8 

Global, All  -0.48 (1.40) 0.84 21.9 -0.89 (1.84) 0.78 46.7 
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improved from their CM4A counterparts [19]. Overall, the CV1S nocturnal CTHs are more 507 
accurate than those from CM4A. 508 

 509 
Figure 9. Probability distributions of cloud-top height differences, CTHV-CTHC, regardless of phase, 510 
JAJO 2015-2016. Top: day, bottom: night, left: all matches, right: overcast matches.  511 

Because of similarities in the CV1S and CM4A optical depths [4], the VIIRS cloud 512 
thickness uncertainties are expected to be much the same as the those from [20], who used 513 
matched CERES Ed4 MODIS and CALIPSO and CloudSat products for the assessment. 514 
The ice-cloud base heights, however, may be biased lower than those from CM4A since 515 
the CV1S cloud-top heights are greater than their CM4A counterparts.  516 

4. Discussion 517 
4.1 VZA and time window dependence 518 

The results in Table 2 are much like those presented by [20] for the CM4A-CALIOP 519 
comparisons. For example, mean global FC during the day (night) is 0.943 (0.881) in Table 520 
2 compared to 0.936 (0.881) for CM4A. The magnitudes of the CV1S bias and FARs are 521 
roughly the same as those for CM4, during the day, but at night, the CV1S parameters 522 
over polar regions are slightly worse than their CM4 counterparts. Part of that polar dif- 523 
ference could be due to the lack of two critical channels in VIIRS complement, as noted in 524 
[4], but also to some differences in VZA. To better understand the effects of VZA on the 525 
comparisons, the dependencies of the metrics on matching times and VZA were com- 526 
puted since the VZA range is affected by the collocation time windows.  527 

Figure 10 plots FC as a function of the time difference Dt between the 0/100 CV1S and 528 
CALIOP data for two VZA ranges: 0 – 30° (black line) and 30-80° (magenta line). Also, 529 
plotted are the daytime sampling densities as functions of Dt and VZA (right column). 530 
They are very similar to their nighttime counterparts (not shown). Dashed vertical lines 531 
denote Dt = ±15 min. During the day (left column), FC reaches 0.9 or greater for all surfaces 532 
for |Dt| < 2.5 min, if only VZAs between 0° and 30° are considered (black line). Except for 533 
a few outlying, poorly sampled time bins, FC decreases gradually with increasing |Dt|. 534 
Over oceans (Figure 10a), near-nadir FC peaks at ~0.97, while the off-nadir maximum is 535 
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~0.95 at Dt = 0 min, when the sampling density is greatest between 10° and 45° (Figure 536 
10c). Notably, FC is smaller for the off-nadir pixels at Dt = 0 min. FC values over SIF land 537 
(Figure 10d) and SIC areas (Figure 10g) are roughly 0.93 and 0.90, respectively. At Dt = 0 538 
min, the sampling is concentrated mostly between 20° and 35° over SIF land (Figure 10f) 539 
and for VZA < 20° (Figure 10i). The sampling becomes more uniform with VZA between 540 
0° and 45° when results for all surfaces are combined (Figure 10j). Overall, the greatest 541 
daytime average for both near-nadir and off-nadir matches coincides closely to Dt = 0 min, 542 
as expected. Enlarging the collocation window will increase the number of samples but 543 
will reduce FC.  544 

At night (middle column), the near-nadir FC means also peak around Dt = 0 min. 545 
Over ocean (Figure 10b), the FC maximum of ~0.95 is straddled by values that drop to 0.90 546 
around |Dt| = 25 min and tend to remain nearly steady at greater time differences. The 547 
mean land FC of ~0.89 (Figure 10f) around Dt = 0 min decreases precipitously, reaching 548 
almost 0.65 at |Dt| = 60 min. The Dt dependence is not quite as strong over SIC areas 549 
(Figure 10h), where the maximum of ~0.77 diminishes to ~0.70 at |Dt| = 60 min. The overall 550 
mean (Figure 10k) peaks at ~0.87 and falls off to 0.70, under the influence of the land and 551 
SIC areas. That maximum is still 0.01 less than that found for CM4A and likely arises from 552 
the causes reported by [4].  553 

An interesting feature of the nocturnal matches in Figure 10 is the greater FC value 554 
over SIF and SIC surfaces off-nadir compared to those at VZA < 30°, regardless of |Dt|. 555 
Over oceans, there is minimal difference between the low and high angle values. Thin 556 
cirrus or low-level clouds that present very small thermal contrast with the underlying 557 
surface should appear colder at higher 558 
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 559 
Figure 10. Cloud-clear detection FC as function of collocation time window and VIIRS VZA for 0/100 560 
cases, JAJO 2015-2016. Mean values are shown for low VZA (0° - 30°) in black and high VZA (30°- 561 
80°) in magenta for day (left column) and night (middle column). Sampling density (right column) 562 
is presented as function of scan time difference and VZA in the right column.   563 

VZAs. Compared to those over ocean, land and SIC surface temperatures are relatively 564 
uncertain. Perhaps, a decreasing cloud temperature with VZA due to increasing optical 565 
path yields a greater temperature difference and hence better detectability over these sur- 566 
faces. If only near-nadir cases were included in the Table 2 statistics, FC would be reduced 567 
overall by 0.02 or more for the land SIF and SIC cases. 568 

In addition to revealing the impact of VZA on FC, the plots in Figure 10 clearly show 569 
the importance of minimizing the time window for matching the CALIOP and VIIRS data. 570 
For cloudy scenes, TPR also depends on |Dt|, with a maximum near zero minutes (not 571 
shown). While FC and TPR tend to decrease as |Dt| increases, the bias tends remain rela- 572 
tively constant with |Dt| for a window of 1 h or less during the day and decrease slightly 573 
at night (not shown). The bias is closer to 0.0 for the greater VZA ranges, an unsurprising 574 
result given the increase of CV1S cloud amounts with VZA [4]. 575 

While this in-depth analysis was performed only for the cloud mask, other parameter 576 
means were computed for a 30-min window corresponding to Tables 3-6. The 30-min win- 577 
dow, indicated by the vertical dashed lines in Figure 10f, increases the VZA range out to 578 
55° and raises the number of samples by a factor of ~6 relative to the 5-min window. Neg- 579 
ligible differences were found in the various cloud phase selection statistics for 0/100 data 580 
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taken from 5-min and 30-min windows. The liquid cloud height biases for the 30-min 581 
matching are within 20-30 m of those in Table 4, while SDDs increased slightly. For both 582 
non-opaque and opaque ice cloud CTH, the 30-min biases are within ±100 m and the SDDs 583 
are essentially unchanged from those in Tables 5 and 6. These relatively small differences 584 
suggest that the 5-min sampling is sufficient for this study.  585 
4.2 Cloud fraction: comparison with other results 586 

A variety of cloud detection algorithms have been developed for application to VIIRS 587 
data. Among others, these include the operational NOAA Enterprise Cloud Mask (ECM, 588 
[28]) and the MODIS-VIIRS Continuity Mask (MVCM, [16]), as well as newer machine- 589 
learning based methods such as the neural network cloud mask (NNCM, [26]) and the 590 
random forest cloud mask (RFCM, [29]). It is of interest to know how similar the CV1S 591 
accuracy metrics are to their counterparts from other VIIRS analysis algorithms. While 592 
one-to-one comparisons are possible in some instances, the criteria used in selecting 593 
CALIPSO and VIIRS matches are not always the same among the published studies. 594 
Therefore, in comparing the CV1S metrics with the other VIIRS evaluations it is important 595 
to recognize differences in selection criteria. 596 

The criteria used to train and evaluate the RFCM are too different from those used 597 
here, so no attempt is made here to compare with those results for cloud detection. How- 598 
ever, the NNCM, ECM, and MVCM results were compared by [26] to 1-km CALIOP data 599 
taken within 2.5 min using two groupings: unfiltered, that is, all of the matched data, and 600 
filtered, which includes only those collocated data for which 5 consecutive 1-km CALIOP 601 
profiles agree. Presumably, that agreement means all 5 pixels are either clear or cloudy, a 602 
condition similar to the 0/100 case. The unfiltered data would nominally correspond to 603 
the 50/50 case.  604 

As a means for comparing with the results of [26], the same parameters, BACC, TPR, 605 
and TNR, were computed for the same categories used in [26]. These are presented in 606 
Table 7 for day and night using the 0/100 data (top) and the 50/50 data (bottom), which 607 
respectively correspond to Tables 5 and 6 in [26]. The black numbers denote those CV1S 608 
parameters that exceed their ECM and MVCM counterparts in the tables of [26], whereas 609 
the bold numbers indicate the CV1S value is greater than the NNCM result. Red and light 610 
blue numbers denote that ECM and MVCM values, respectively, exceed their CV1S coun- 611 
terparts. Purple signifies that both ECM and MVCM are greater than CV1S.  612 

In all cases but one, the NNCM values exceed their CV1S counterparts. The mean 613 
global BACC differences between CV1S and NNCM for 0/100 are -0.015 and -0.056 for day 614 
and night, respectively. For the 50/50 cases, the corresponding differences are -0.018 and 615 
-0.055. Those differences are similar in magnitude to the mean cloud fraction differences 616 
between CV1S and CALIPSO in Figure 3. The mean global day/night BACC differences 617 
between CV1S and ECM are 0.015/0.067 for 0/100 data and 0.008/0.016 for 50/50 data. For 618 
CV1S and MVCM, those same differences are 0.043/0.002 and 0.026/-0.006. Thus, except 619 
for nighttime 50/50 data, the CV1S BACC values all fall between the NNCM and the op- 620 
erational algorithms. The lower BAM metrics for CV1S relative to the NNCM are no sur- 621 
prise given that the latter is a machine learning code trained with collocated CALIOP data 622 
using 16 VIIRS channels from 9 pixels centered on each VIIRS pixel of interest.     623 

Table 7. Balanced accuracy method metrics for CV1S detection computed for different surface types 624 
using collocated 1-km CALIOP Layers Product. Black: CV1S > ECM & MVCM; red: ECM > CV1S; 625 
blue: MVCM > CV1S; purple: ECM & MVCM > CV1S; bold: CV1S > NNCM. 626 

0/100 Day Night 
 BACC TPR TNR N x103 BACC TPR TNR N x103 

Global 0.953 0.970 0.937 297 0.878 0.902 0.853 343 
Water 0.958 0.981 0.935 187 0.916 0.939 0.892 206 
Land 0.940 0.941 0.939 110 0.825 0.819 0.831 137 

Sea Ice 0.959 0.954 0.964  27 0.823 0.838 0.809  43 
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Perm. snow 0.908 0.908 0.908  32 0.760 0.703 0.817  58 
Snow land 0.911 0.913 0.909  44 0.774 0.740 0.808  79 

50/50 Day Night  
Global 0.887 0.919 0.855 396 0.824 0.850 0.798 470 
Water 0.885 0.935 0.834 250 0.854 0.883 0.826 292 
Land 0.878 0.881 0.876 145 0.775 0.776 0.774 178 

Sea Ice 0.924 0.926 0.920  33 0.769 0.807 0.731  57 
Perm. snow 0.869 0.871 0.867  39 0.713 0.663 0.763  74 
Snow land 0.865 0.873 0.857  55 0.724 0.698 0.749 102 

Figure 11 plots the variation of TPR with the CALIPSO 5-km cloud optical depths for all 627 
HA < 1 km, 0/100 cases having a valid optical depth for the entire column regardless of 628 
phase. Globally (Figure 11a), TPR rises from ~0.86 for clouds having CODC < 0.2 up ~0.94 629 
for CODC =1 during the daytime (solid curve). TPR drops substantially at night (dashed) 630 
with a mean of 0.65 for CODC < 0.2 and only reaches 0.86 at CODC =1. It then increases to 631 
0.90 at CODC = 2, then decreases and rises again for increasing CODC. The reason for the 632 
nocturnal dip at CODC = 2.3 is related to the reduction of the lidar ratio within the CALIOP 633 
extinction retrieval algorithm in order to achieve a convergent solution [25]. Over nonpo- 634 
lar areas (Figure 11b), TPR moves from 0.87 for CODC < 0.2 during the day to nearly 0.97 635 
at CODC = 1, a noticeable improvement over the global daytime case. Eliminating the polar 636 
regions yields a more dramatic change in TPR for the nocturnal cases. It jumps to 0.78 for 637 
CODC < 0.2 and 0.96 for CODC = 1, remaining above 0.93 for greater optical depths. Alt- 638 
hough not shown, TPR exceeds 0.97 at night for CODc > 5. 639 

The plots in Figure 11a can be compared to the curves for the filtered results in Fig- 640 
ures 4c and 4d of [26]. During the day, the CV1S TPR values are below the NNCM values 641 
for all optical depths, but are above those from the MVCM and ECM. The MVCM TPR 642 
equal to 0.88 for CODC < 0.2 represents the sole exception to that generalization. At night, 643 
the TPR from CV1S exceeds that from the MVCM for all CODc values. It is slightly greater 644 
than or equal to that from the ECM for CODC < 2, but falls below the ECM curve for larger 645 
CODC values. The NNCM TPRs are higher than the CV1S values for all optical depths. 646 
The ordering of the TPR curves from the various methods further supports the results in 647 
Table 7 and demonstrates the high quality of the CERES VIIRS cloud mask relative to 648 
other operational techniques. It also illuminates areas for improvement, particularly over 649 
the polar regions at night for clouds having optical depths below 5.     650 

 651 
Figure 11. Dependence of CV1S true positive rate on CODC for 0/100 ice clouds, HA < 1 km, JAJO 652 
2015-2016. Solid (hashed) bars indicate fraction of cloud profiles for day (night) observations. 653 

4.3 Cloud phase  654 
From Figure 5, it is clear that misclassification of the cloud-top phase is a significant 655 

problem for multi-layer (ML) systems with nonopaque ice clouds above a low liquid 656 
cloud. That cloud type accounts for roughly 60% and 37% of the total phase misclassifica- 657 
tions for day and night, respectively (Figure 5). As seen in [20], the probability of 658 
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classifying the system as an ice cloud rises as the optical depth of the upper cirrus cloud, 659 
CODu, increases. Figure 12 plots the CV1S classification of CALIOP pixels that include 660 
non-opaque or transparent cirrus over a lower water cloud (ML clouds). Unlike the results 661 
in Figure 5, the plots are based on data collocated in a 30-min window and use all hori- 662 
zontal averaging results, i.e., HA < 80 km), because some of these cases are detected as 663 
clouds in the CV1S cloud mask. During the daytime (Figure 12a), roughly 14% of these 664 
ML cases having CODu < 0.1 are classified as clear and 14% are identified as ice clouds. 665 
The remainder are liquid water clouds according to CV1S. As CODu increases, the clear 666 
and water cloud fractions decrease, while the ice cloud fraction rises. The breakeven point 667 
occurs at CODu = 0.93. Of the 17% remaining matched pixels having CODu > 0.93, the frac- 668 
tion of pixels classified as ice does not exceed 75%. At night (Figure 12b), the breakeven 669 
point drops to CODu = 0.16. For CM4A, the daytime break-even CODu is ~0.95 and at night 670 
it is ~0.20 for CM4A [19]. The day-night discrepancy in the breakeven point is the result 671 
of the spectral channel complement differences used for the day and night algorithms. 672 
During the day, the optical depth of the lower cloud significantly contributes to the total 673 
COD since it is based on the column visible reflectance. The resulting adjustment of the 674 
thermal channel brightness temperature to account for the COD in the retrieval process is 675 
diminished when COD > CODu. In these cases, CET > 233 K and more likely will be clas- 676 
sified as liquid. At night, COD is based on the thermal contrast between the surface and 677 
the cloud temperature. For these ML systems, the surface and lower cloud temperatures 678 
are small relative to the cirrus temperature, so there a much smaller impact from the low 679 
cloud on the retrieval of CET. Hence, significantly more ML clouds are classified as water 680 
during the day than at night. 681 

 682 
Figure 12. Variation of CV1S scene identification and phase for multilayer non-opaque cirrus over 683 
low clouds as a function of CALIOP cirrus optical depth (CODu) using HA < 80 km data collocated 684 
within 15 min. Number of samples used as ratio to total CALIOP cases is indicated in the blue box. 685 
The asterisks denote the CODu of the median and 90th percentile. 686 

Another difficult situation for determining cloud phase is the presence of super- 687 
cooled water clouds (SWC), those clouds having temperatures between 233 K and 273 K. 688 
Determining the presence of SWC is important for cloud modeling and for various appli- 689 
cations. Figure 13 shows the phase selection percentages of 0/100 CV1S pixels that had a 690 
uniform phase and have 233 K < CET < 273 K for three phase classifications from CALIOP 691 
pixels collocated within 10 min of the VIIRS pixels. The three CALIOP categories are liq- 692 
uid, ice, and mixed. The last class includes matched pixels having both phases detected 693 
somewhere in the column. The other two require horizontal and vertical homogeneity in 694 
the phase classification. During the day (Figure 13a) and at night (Figure13b), the CV1S 695 
detects 96% and 75%, respectively, of the SWC that do not occur in mixed phase condi- 696 
tions. Of the pure ice clouds having CET in the supercooled temperature range, 89% are 697 
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correctly classified as ice by the CVS1 regardless of time of day. The majority of the mixed 698 
phase clouds are thin cirrus over liquid clouds and roughly 2/3 of them are classified as 699 
liquid during the day and as ice during the night. This day-night phase difference is not 700 
surprising based on the previous discussion. The results suggest that some improvement 701 
is needed for the nocturnal phase selection algorithm in the SWC temperature range.  702 

 703 
    Figure 13. CV1S classification of clouds having effective temperatures between 0.0°C and -40°C 704 
for three different categories liquid, ice, and mixed phase clouds as determined from CALIOP pro- 705 
files using the method of [30]. Percentages of each CALIOP category classified by CV1S as liquid or 706 
ice cloud are indicated in blue and red, respectively.  707 

With a few caveats, these results can be compared those from [30], who assessed the 708 
cloud phase from their algorithm using the 2B-CLDCLASS-LIDAR RO5 product [31], 709 
which combines CALIOP and Cloudsat data to define the profile of cloud hydrometeors 710 
and their phase. Using only matched pixels having the same phase as the surrounding 3x3 711 
array of pixels taken within 10 minutes, [30] found that they correctly identified 91% of 712 
the pure SWC clouds and 85% of the pure ice clouds during the day. Additionally, [30] 713 
found that their daytime cloud phase algorithm outperformed the corresponding product 714 
from the SNPP VIIRS climate data record continuity cloud properties (CLDPROP) algo- 715 
rithms [32] in detecting SWC. Assuming that the CALIOP and CLDCLASS provide similar 716 
cloud phase information and the matching criteria are not too dissimilar, the CV1S SWC 717 
detection appears to be more successful than its counterparts from [30] and [32].  718 

The machine-learning based RFCM was also used to determine cloud phase and val- 719 
idated using CALIOP data from 2017 [29]. Defining ice-phase outcomes as positive events 720 
and liquid-phase outcomes as negative events, they evaluated the RFCM and VIIRS 721 
CLDPROP operational cloud phase products by computing TPR and FPR for each product 722 
for a variety of surface conditions. For comparison, a similar analysis was performed us- 723 
ing the CV1S 0/100 SLP data. It should be noted that the comparison is not straightforward 724 
due to constraints placed on the data by cloud mask, phase outcomes, and data sampling. 725 
For example, the results here are not constrained by the outcomes of the RFCM and 726 
CLDPROP cloud mask and phase algorithms, or their use of aerosol-free pixels. However, 727 
the cloudy pixels used to evaluate phase in the analyses of [29] used ~27.5% of the availa- 728 
ble collocated pixels compared to ~26% here. For daytime conditions over all surface 729 
types, CV1S yields TPR values of 0.926 and 0.915 for 1-km and 5-km averaged CALIOP 730 
data, respectively. The corresponding FPR values are 0.033 and 0.033, respectively. These 731 
values are quite similar to the results show in Figure 8 of [29], but it is difficult to precisely 732 
compare the values to those plotted in the aforementioned figure. For nighttime condi- 733 
tions over all surface types CV1S has TPR and FPR of 0.967 and 0.161, respectively. This 734 
TPR is similar to the RFCM TPR (Figure 9 of [29]). While the CV1S FPR is higher than for 735 
the RFCM, it is very similar to that of CLDPROP. 736 

  737 
4.4 Cloud top heights  738 
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Before discussing the CTH results, it is instructive to review the retrieval process. The 739 
determination of CTH is relatively straightforward. First, COD, phase, and CER are esti- 740 
mated together. Based on those parameters, CET is essentially computed by solving 741 

B(T11) = ec B(CET) – (1 – ec) es B(Ts), 742 
 743 

the simplified form of equation (12) of [33], which includes all of the atmospheric correc- 744 
tions. The observed 11-µm brightness temperature is T11; Ts and es are the surface skin 745 
temperature and emissivity, respectively; and ec(COD, CER, phase) is the cloud emissiv- 746 
ity. Once CET is determined, it is matched with the lowest altitude, Zmin, in the provided 747 
temperature profile corresponding to CET, yielding the cloud effective height, CEH. CTH 748 
and CTT are then estimated from CEH by applying one of several empirical corrections 749 
that depend on cloud phase, temperature, and COD [4], otherwise it is capped at the trop- 750 
opause.  751 

The profile, T(Z), is constructed from a numerical weather reanalysis (see [4]) and a 752 
low-altitude lapse rate based on matched SL CALIOP and MODIS pixels [34]. The lapse 753 
rate is anchored to Ts and is used exclusively for all altitudes below the level, Z1, corre- 754 
sponding to a pressure between 750 and 827 hPa depending on surface type and latitude. 755 
Between Z1 and the level, Z2, corresponding to a pressure between 650 hPa and 750 hPa, 756 
T(Z) is a blend of the lapse rate and reanalysis profile. Above Z2, T(Z) is provided by the 757 
reanalysis profile, which is from version 5.4 of the Global Modeling Assimilation Office 758 
(GMAO) Global Earth Observing System Model Version 5.41 (GMAO-G541) [35]. For 759 
most clouds, CTT is constrained to be equal to or less than the tropopause temperature. 760 
Hence, CTH is only allowed to be above the tropopause for overshooting convective tops, 761 
and other exceptions noted in [36].    762 
4.4.1 Liquid water cloud heights 763 

Because the results in Table 3 are so much like those from the earlier CM4A compar- 764 
isons [19], it can be concluded that the biases are systemic and not due to any peculiarities 765 
of the VIIRS data. Focusing on SIF ocean cases, it is possible to eliminate a few of the 766 
variables that could be major contributors to the biases. Sea surface temperature and emis- 767 
sivity are known fairly accurately, so that ec is the most likely source of uncertainty for 768 
determining CET in Eq(1). The remaining source of error is in the determination of CEH 769 
from CET using T(Z).  770 

 771 
Figure 14. Frequency of occurrence of CV1S COD for liquid water clouds, 2012, 30°S – 60°S. 772 

Assuming the phase is correct, ec is primarily dependent on COD, which is estimated 773 
using the visible channel during the day and infrared channels at night. The latter limits 774 
the range of retrieved values to roughly 0 – 8, but more practically to a much smaller range 775 
because the uncertainties grow substantially at the higher end of the COD interval. To 776 
illustrate the day-night differences, Figure 14 plots histograms of CV1S liquid water CODV 777 
separately for 2012 between 30°S and 60°S. During daylight over ocean (Figure 14a), CODV 778 
occurs most frequently, ~23% of the time, between 8 and 16. Between CODV = 2 and 4, the 779 
maritime frequency is ~15% compared to ~20% between 4 and 8. At night (Figure 14b), for 780 
4 < CODV < 8, the frequency is ~31% and ~25% for 2 < CODV < 4. Both are much greater 781 
than their daytime counterparts. For CODV < 2, the frequencies are nearly the same for day 782 
and night. The frequencies are significantly reduced at night for CODV > 8. These results, 783 
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much like those found globally, indicate that clouds that are optically black in the infrared 784 
are being interpreted as gray clouds with emissivities less than unity. This would result 785 
in an underestimate of CET and an overestimate of CEH and CTH for those clouds at 786 
night.  787 

While the CODs might explain the day-night difference in the CTH biases, the lapse 788 
rates employed in assembling T(Z) used CM4A CODs having almost the same character- 789 
istics as those from CV1S [34]. Thus, the tendency for over-correcting CET at night should 790 
have been taken into account in the empirical lapse rates. The lapse rates were constructed 791 
from cloudy, liquid phase CM4A pixels matched with 5-km HA pixels from CALIOP. To 792 
increase the sample size, only two out of three subpixels had to be cloudy and be single- 793 
layered to qualify as overcast. Thus, the definition for overcast SL pixels used here and for 794 
the lapse rate development are slightly different, possibly introducing some discrepan- 795 
cies. It is not clear that this would only be a problem at night. The lapse rate development 796 
also used only those MODIS pixels classified as liquid water clouds. At night, 21% of liq- 797 
uid clouds were misclassified as ice, compared to 6% during the day. The day-night phase 798 
error difference is even starker for SWC clouds (Figure 13). Again, the data used for the 799 
lapse rate construction had approximately the same day-night difference in phase selec- 800 
tion, so the day-night bias discrepancy is not explained.     801 

 802 
 Figure 15. Histograms of SIF ocean CTH differences as a function of the brightness temperature 803 
differences (BTD) between the VIIRS 11 and 12-µm channels (left) and the CV1S cloud optical depth 804 
(right) from daytime (top) and nighttime (bottom) data for 0/100 SL overcast liquid water clouds, 805 
JAJO 2015-2016. Fractional frequencies of occurrence are provided in the bottom portion of each 806 
plot. Mean differences are indicated by horizontal lines in each bar. Shaded area indicates the range 807 
of data for each bar.                    808 

To further explore the biases in liquid CTH, the mean 0/100 CTH differences, DZT, 809 
are plotted in Figure 15 as functions of the 11-12 µm channel brightness temperature dif- 810 
ferences, BTD, and COD. During the day (Figure 15a), mean DZT is close to zero or positive 811 
for 90% of the data, corresponding to BTD < 1.5 K. As BTD increases, the differences be- 812 
come more negative, reaching approximately -1 km at BTD = 8 K. Those negative values 813 
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occur primarily for COD < 2 (Figure 15b), suggesting COD is overestimated for those 814 
cases. Additionally, they are likely to be midlevel clouds with small droplet sizes, because 815 
BTD increases with the cloud-surface temperature contrast and decreasing droplet size 816 
(e.g., [37]. Except for those thin clouds, DZT is near zero or positive for COD > 2. At night 817 
(Figure 15c), the mean bias is positive for all BTDs and CODs.  818 

This consistency across the board suggests that the lapse rate method should be re- 819 
visited as it apparently cannot account for all conditions. The basic assumption behind its 820 
use is that there is a connection between the surface and the low cloud height or the in- 821 
version that caps the cloud top. That may work well for marine stratus under a strong 822 
high pressure, but is less viable when the surface and clouds may be decoupled, for ex- 823 
ample in baroclinic systems (e.g., [38]) or where the boundary layer inversion is weak or 824 
nonexistent in the stratocumulus transition regions. Those are the areas where the noctur- 825 
nal bias is strongest in Figure 7c. Thus, a different approach may be needed to eliminate 826 
the biases in those regions.            827 
4.4.2 Ice cloud heights 828 

Matching CET with T(Z) is a process fraught with error sources for all types of clouds. 829 
The horizontal features in the scatterplots of Figure 8 appear to cause a significant portion 830 
of the underestimates of ice cloud top heights. Few CTHV values exceed 16 km, while 831 
many of the CALIOP measurements yield CTHC values exceeding 17 km. When compared 832 
with spaceborne lidar measurements, CERES Edition-2 cloud effective heights were un- 833 
derestimated by up to 5 km in the tropics, but were around 2 km lower at other latitudes 834 
[39]. Since the highest clouds are found in the tropics, it is possible that much of the bias 835 
is found only in the tropics.  836 

 837 
Figure 16. Scatterplots of 0/100 CALIOP and CV1S nighttime, single-layer, ice cloud top heights for 838 
the tropics (left, latitude < 30°) and mid-latitudes (30° < |latitude| < 60°) for opaque (top) and non- 839 
opaque (bottom) clouds, JAJO 2015-2016, time window of ±15 min. 840 
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To examine that idea further, the nighttime 0/100 single-layer ice CTH values from 841 
CV1S are plotted in Figure 16 against those from CALIOP separately for mid-latitude and 842 
tropical areas. Data matched to within ±15 min were used to increase the sample sizes. 843 
The horizontal features seen in Figure 8 dominate the plots for both opaque (Figure 16a) 844 
and non-opaque (Figure 16c) clouds in the tropics. Some evidence of the features remains 845 
in the midlatitude scatterplots, but CTHV and CTHC are mostly balanced at the upper end 846 
of the range. Hence, the midlatitude CTHV biases are -0.6 km for opaque clouds (Figure 847 
16b) and -0.1 km for non-opaque clouds (Figure 16d), dramatically lower than their trop- 848 
ical counterparts. The SDD values are much higher for tropical clouds, while R is signifi- 849 
cantly greater for mid-latitude clouds. Similar differences between tropical and midlati- 850 
tude cloud heights were also found using daytime data (not shown).      851 

The most obvious culprit for causing the horizontal features, the tropopause height 852 
limitation to CTH noted earlier, is applied at all latitudes. But the determination of the 853 
tropopause altitude, Zp, in tropical regions is more difficult because of the existence of the 854 
tropical tropopause layer (TTL), which is roughly between 14 and 18.5 km (150 and 70 855 
hPa) according to [40]. Figure 17 illustrates the TTL with example soundings from a sta- 856 
tion on the Atlantic coast of Brazil, Fernando de Noronha at 3.85°S, 32.41°W (Figure 17a). 857 
The radiosonde profile (solid red curve) taken at 1200 UTC, 15 July 2022 reveals the coldest 858 
temperature is found near 17.1 km among several other relative minima in T(Z) within 859 
the approximate TTL altitude range (green lines in Figure 17b). The G541 profile (dashed 860 
blue line), the product of assimilation and smoothing at a much lower vertical resolution, 861 
shows considerably less detail and misses the coldest temperatures. As indicated by the 862 
narrow horizontal dashed line in Figure 17, Zp from G541 is 15.8 km, well below Zmin in 863 
the radiosonde profile. It corresponds to a pressure of ~115 HPa. Other relevant tempera- 864 
ture discrepancies between the numerical model and radiosonde profiles are evident be- 865 
tween 5 and 8 km.    866 

 867 

 868 
Figure 17. Temperature profiles near Fernando de Noronha, Brazil, 12 UTC, 15 July 2022 at 3.85°S, 869 
32.41°W. (a) full profile to 28 km, (b) closeup of profile between 10 and 20 km. Thick dashed blue 870 
line is from G541 used by CERES and the solid red line is from a radiosonde. Zp and the thin dashed 871 
line mark the tropopause height from G541. Approximate boundaries of the tropical tropopause 872 
layer shown as green lines.  873 

The value of Zp in this example is in the upper range of the tropical tropopause alti- 874 
tudes in the G541 data. At 12 UTC, 15 July 2022, the reanalysis produces tropopause pres- 875 
sures that vary from around 200 hPa to 110 hPa. A small cloudless area over the subtrop- 876 
ical high near California yields a pressure of ~85 hPa. Thus, the range of tropical tropo- 877 
pause G541 generally falls between ~12.4 and 16 km with occasional anomalies up to 17.5 878 
km. That range corresponds well with the bulk of the horizontal features in Figures 15a 879 
and 15c. It is well known that thin clouds and deep convective tops are commonly found 880 
at different levels within the TTL [40]. So, it is not surprising that the CALIOP cloud-top 881 
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heights reach 18.5 km in the tropics. The horizontal features in Figure 16a are clearly due 882 
to the low altitudes of Zp in the reanalysis and the constraint that limits the maximum 883 
CTH to Zp in the CERES algorithms. Correcting for that shortcoming in the input data and 884 
algorithm, a task for future research, should reduce the biases in the ice CTHs. The re- 885 
maining biases can be addressed by using an improved ice crystal scattering model (e.g., 886 
[41]) and a revised CEH to CTH adjustment, as noted by [19].      887 
4.4.3 All cloud heights 888 

Except for Figure 9, the height comparisons focused on clouds that are matched in 889 
phase and mostly single-layered. Those clouds comprise only a subset of the total. To fur- 890 
ther explore the nature of the errors in CTH determination when all clouds are considered, 891 
both 50/50 and 0/100 CTHV and CTHc pairs similar those used in the right side of Figure 9 892 
were grouped according to one of the eight CALIPSO VFM cloud types: opaque (OP) and 893 
transparent (NO) low overcast; transition stratocumulus (Sc); low broken cumulus (Cu); 894 
transparent altocumulus (Ac) and cirrus (Ci); and opaque altostratus (As) and deep con- 895 
vective clouds. Instead of using the results from Figure 9, each 1-km HA CALIOP pixel is 896 
matched to the nearest VIIRS pixel within a 2.5-km radius. The higher resolution CALIOP 897 
and matching approach are employed to facilitate comparisons with other datasets. The 898 
results include matched pixels that agree or disagree in phase selection and have both 899 
single and multi-layered clouds. From Figure 9, it is expected that the CTH difference 900 
statistics should very close for the 50/50 and 0/100 data, so the 0/100 results can be used to 901 
represent all clouds. To increase sampling, data with |Dt| < 15 min are used.  902 

  903 
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Figure 18. a) CV1S daytime cloud phase selection for different CALIOP cloud types and b-i) scat- 904 
terplots of 0/100 CTHC and CTHV pairs for each cloud type. Data are from JAJO 2015-2016 and were 905 
constrained to CALIOP/CV1S observation time differences of |Dt| < 15 min. CALIOP HA £ 5 km. 906 

Figure 18 plots the CV1S phase breakdown (Figure 18a) and scatterplots of matched 907 
CTHV and CTHC values (Figures 18b-h) for daytime 0/100 matches. Except for the transi- 908 
tion stratocumulus, low clouds are almost completely classified as liquid, while significant 909 
fractions of midlevel clouds are identified as ice. Of the transparent cirrus, 39% of the 910 
pixels are classified as water, suggesting the presence of low-level water clouds. Even 10% 911 
of the deep convective opaque clouds are classified as liquid. Those cases are most likely 912 
composed of cirrus with CODC ~3 over thick, low clouds or are unglaciated deep convec- 913 
tive clouds, as CALIOP classifies some as liquid also (shown below).  914 

Misclassification of low cloud phase as ice would tend to cause an overestimate of 915 
CTHV for clouds having CODV < 6. This effect is likely responsible for many of the CTH 916 
overestimates seen in Figures 18b-d and 18f-i. Low overcast transparent or non-opaque 917 
(NO) clouds in Figure 18a have the smallest bias and number of pixels with CTHV > 4 km. 918 
The larger biases for opaque (OP) low clouds (Figure 18c) and transition Sc (Figure 18f) 919 
are accompanied by more values above 4 km, producing biases of ~0.2 km. The broken Cu 920 
clouds (Figure 18g) yield the greatest biases. In this instance and possibly for the transition 921 
Sc, holes in clouds interpreted as overcast by CV1S, would diminish CODV and raise CTHV.  922 

Midlevel cloud CTHs are affected by several factors including the wrong phase. Low- 923 
level clouds underneath NO Ac clouds result in underestimation of CTH as seen around 924 
CTHV = 2 km in Figure 18d and Figures 6a and 6b. Those plots clearly show the need to 925 
account for liquid-over-liquid ML clouds in cloud CTH retrievals. The ML cloud effect is 926 
less evident for opaque As clouds, however, a different error source is likely responsible 927 
for the vertical feature seen near CTHC = 3.5 km in Figure 18h. The transition from the low- 928 
level lapse rate and reanalysis typically occurs between 3 and 4 km. For areas where the 929 
Ts-based lapse rate is much steeper than the reanalysis in the transition pressures, CET 930 
may correspond to a lower altitude than found in the reanalysis profile (e.g., Figure 5 of 931 
[34]), resulting in underestimates of CTH in the transition layer. This effect is also appar- 932 
ent in the Ac plot (Fig. 18d), which suggests that COD is overestimated because the bulk 933 
of the scatter occurs below the 1:1 line, unlike that for As.       934 
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 935 
Figure 19. Same as Figure 18, except for nighttime data. 936 

At night (Figure 19), the results are somewhat different. As seen in Figure 19a, more 937 
clouds are placed in the clear category and more ice clouds are placed in the low cloud 938 
categories, compared to the daytime, as expected from Figure 5. Conversely, fewer cirrus 939 
and deep convective clouds are mistaken as liquid water clouds. In a reversal of their 940 
daytime biases, nocturnal transparent Ac (Figure 19d) and As (Figure 19h) CTHs are over- 941 
estimated, on average, by 0.4 – 0.5 km. The cirrus (Figure 19e) and deep convective (Figure 942 
19i) underestimates are significantly reduced compared to daytime. Biases for all of the 943 
other cloud types are larger at night, especially for broken cumulus clouds (Figure 19g). 944 
The rise in the bias for those clouds is mainly due to the increased proportion of liquid 945 
clouds being identified as ice, which will result in a smaller CODV and lower CET than if 946 
the liquid model were selected for the retrieval. 947 
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 948 
Figure 20. Cloud-top height biases, DZ, as a function of CALIOP/CV1S cloud-top phase agreement 949 
for CALIOP VFM cloud types, JAJO 2015-2016, |Dt| < 15 min. W and I represent water and ice, 950 
respectively. Top: Biases, Bottom: Percent of each phase pair comprising the cloud type samples. 951 
Left: Day. Right: Night.      952 

The impact of selecting the wrong phase on the estimation of CTH can be quantified 953 
by dividing the results from Figures 18 and 19 into four different phase-pair groups, de- 954 
noted by CALIOP/CV1S phase types water (W) and ice (I). Figure 20 plots the bias (top), 955 
DZT, for each phase pair as a function of VFM cloud type. Each bias is accompanied by the 956 
fraction of the total number of pixels for a given cloud type (bottom) represented by a 957 
given phase pair. When both CALIOP and CV1S agree on liquid water (W/W, blue line), 958 
DZT is very close to zero for low clouds both day (Figure 20a) and night (Figure 20b), but 959 
becomes negative for higher clouds, especially for Ci. For low clouds, this represents more 960 
than 95% of the pixels during the day (Figure 20c) and more than 85% at night (Figure 961 
20d). When both CALIOP and CV1S agree that the highest cloud is ice (I/I, gray line), the 962 
low-cloud biases are between 2 and 4 km during the day and 1 and 5 km at night. Except 963 
for Cu during the night, the percent of cases is very small. The biases are between 0 and 1 964 
km for I/I midlevel clouds and account for ~10% of pixels in daylight and ~20% at night. 965 
For I/I Ci, DZT near -1.7 km and comprises ~55% and ~80% of the total during day and 966 
night, respectively. Deep convective I/I clouds are less biased, with DZT between -0.53 and 967 
-0.75 km. They account for more than 90% of the total both day and night. For cases with 968 
phase agreement, the biases are still relatively large for the midlevel and Ci clouds. The 969 
impact of clouds below these higher cloud types can have a significant influence on the 970 
CET retrieval, when CODU < 6. 971 

When the phase selections disagree, |DZT| is larger in all cases, except for low clouds 972 
when CALIOP selects ice and CV1S phase is water (I/W, red line). In that instance, the 973 
biases are comparable in magnitude, I/W pixels are sparse for low clouds. For higher I/W 974 
clouds, DZT is extremely negative and accounts for significant fractions of the Ac and Ci 975 
pixels, especially during the day. Most of the pixels are likely to be ML clouds with low- 976 
level water clouds (e.g., Figure 12). Pixels with CALIOP water and CV1S ice phases (W/I, 977 
green line) have a strong positive bias and primarily affect the midlevel clouds during the 978 
day and low and midlevel clouds at night. Thus, there is some balancing effect of the phase 979 
errors on the overall biases for midlevel clouds. The nocturnal bias for low clouds is driven 980 
upwards by the CV1S selection of ice instead of the correct water phase. It is quite evident 981 
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that, among other factors, determining the correct phase for more pixels will result in im- 982 
proved CTH accuracy. 983 

Table 8. Error summary for four CTH retrieval products relative to CALIOP VFM product: Bias 984 
(DZT) and mean absolute error (MAE). Results for PPS, MOD C6, and HNN taken from [12]. CV1S 985 
results based on 1-km JAJO 2015-2016 data, |Dt| < 15 min.  986 

 All (km) Low (km) Midlevel (km) High (km) 
Method DZT MAE DZT MAE DZT MAE DZT MAE 

PPS -1.47 2.09 0.31 0.85 -0.35 1.12 -3.46 3.56 
MOD C6 -1.15 1.92 0.22 0.95 -0.71 1.76 -2.54 2.85 

HNN -0.41 1.19 0.39 0.53 0.22 0.83 -1.36 1.90 
CV1S100 -0.99 1.92 0.38 0.80 -0.10 1.58 -2.17 2.75 
CV1S50 -0.97 1.95 0.43 0.86 -0.09 1.62 -2.23 2.82 

  Even with the relatively large errors seen above, the overall accuracy of the CV1S 987 
CTH product is in line with other operational CTH retrievals. Retrievals of CTH from 988 
three passive methods were compared with CALIOP data by [12]. The three techniques 989 
include an experimental neural network (HNN) method developed by [12], the MODIS 990 
Collection 6 (MODC6) algorithm [42], and the Polar Platform System (PPS) 2014 version 991 
[43]. The HNN uses matched 1-km CALIOP and Aqua MODIS pixels from 4 days in 2010 992 
simulating the VIIRS data using 3 MODIS infrared channels, while results from MODC6 993 
and PPS were also matched with the 1-km CALIOP data for the same dates. Table 8 lists 994 
the biases and mean absolute errors (MAE) for the three retrieval algorithms as reported 995 
by [12] employing combined day and night results. According to [12], MAE represents a 996 
more balanced measure of precision than SDD for non-Gaussian distributions. The statis- 997 
tics in the first 3 rows of Table 8 were taken from Tables 6-9 of [12]. The low, midlevel, 998 
and high clouds in [12] are defined by pressures 680 hPa and 440 hPa, the same definition 999 
used for the CALIOP cloud typing. Biases and MAEs were computed for the three cloud 1000 
levels using combined CV1S pixel data from the appropriate cloud types, as in Figures 18 1001 
and 19. It is also not clear if the 1-km CALIOP pixels used by [12] are overcast, so both 1002 
0/100 (CV1S100) and 50/50 (CVS50) were computed. Those results, derived from ~2.7 and 1003 
~2.9 million collocations, respectively, comprise the bottom row in Table 8.  1004 

In all but two cases, the low and midlevel cloud biases, the experimental HNN pro- 1005 
duces the smallest error in every category. The CV1S values are the second lowest for all 1006 
parameters, except the midlevel MAE and midlevel DZT. PPS yields the second smallest 1007 
value for the former case and CV1S is lowest result for the midlevel bias. Overall, CV1S 1008 
and MOD C6 are quite close, with the latter simultaneously yielding the smallest bias and 1009 
largest MAE for low clouds. The CV1S50 low cloud height bias is the largest, mainly as a 1010 
result of the phase misclassification discussed above. The CV1S100 low-cloud MAE is the 1011 
smallest of the operational methods, while those for PPS and CV1S are nearly identical. 1012 
High-cloud CTH errors for the CV1S results are the least for the non-HNN techniques. Of 1013 
the three considered operational algorithms, the PPS has the largest errors overall. There 1014 
is minimal difference between the CV1S50 and CV1S100 errors. It should be noted that there 1015 
are some differences between the data used by [12] and those employed here. The latter 1016 
comprise 750-m VIIRS pixels taken at various VZAs with |Dt| < 15 min, while the former 1017 
are near-nadir, 1-km MODIS pixels with |Dt| < 3 min. As noted earlier, the time and VZA 1018 
differences raise the CV1S SDD and hence its MAE, but have a small impact on the bias 1019 
except for transparent cirrus, which has a nocturnal negative bias that decreases with 1020 
VZA. While the HNN produces a superior result in general, it is reasonable to conclude 1021 
that overall the CV1S CTH accuracy is as good as or better than at least two often-used 1022 
operational CTH products.  1023 

CERES is a project devoted to understanding the interactions of clouds and aerosols 1024 
on the Earth radiation budget, not just at the top of the atmosphere, but within the atmos- 1025 
phere and at the surface. Thus, accurate vertical placement of clouds is an important 1026 
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component in measuring and modeling the radiation field for a given atmospheric col- 1027 
umn. A reliable estimate of CTH for the highest cloud in the column is a significant step 1028 
in describing the cloud structure. Cloud base height is another. Those two parameters plus 1029 
COD and CER, as well as their vertical distribution determine the impact on the emitted 1030 
and reflected radiation, particularly for the former. That impact can be summarized as the 1031 
cloud effective height, which, if the radiation from the surface and other atmospheric com- 1032 
ponents is correctly represented, corresponds to the brightness temperature of the cloud 1033 
contribution to the outgoing infrared flux. It corresponds to some distance below the top 1034 
of single-layer clouds. That distance depends on the cloud microphysics. For ice clouds it 1035 
can be 1 km or more (e.g., [44,45]), while it may only be a few tens of meters or less for 1036 
liquid water clouds. For multilayer clouds, it can be located at some altitude between the 1037 
layers unless the top layer is optically thick. Moreover, if CTH is correctly determined for 1038 
the ice cloud in a ML system, but the bulk of the COD is from the low-level cloud, there is 1039 
a mismatch of the cloud phase and the water content, unless the cloud is explicitly inter- 1040 
preted as a ML clouds system (e.g., [46]). Retrieving the bulk parameters needed to more 1041 
accurately characterize the radiation field than presently possible will therefore require 1042 
much more than simply finding CTH.                1043 

5. Conclusions 1044 
Several CV1S cloud products have been compared to CALIOP data taken at various 1045 

resolutions, collocation time differences, and VIIRS VZAs in order to estimate the CV1S 1046 
cloud retrieval accuracies. A number of findings result from the ensuing analyses. 1047 

- The accuracies of CV1S cloud fraction are slightly better than those for CM4A dur- 1048 
ing the daytime and about the same as those at night. CV1S cloud phase accuracy is 1049 
slightly worse than CM4A during the day and night. Sensitivity of phase selection to ice 1050 
cloud optical depth in multi-layered clouds is very consistent between CV1S and CM4A. 1051 
The cloud-top height comparisons are very consistent with their CM4A counterparts with 1052 
the exception of reduced ice cloud top height biases for CV1S, likely the result of using 1053 
different channels for backup retrievals.  1054 

- The time window for matching CALIOP and imager data is very important for as- 1055 
sessing instantaneous cloud amount, but is not as critical for determining cloud amount 1056 
bias. Using a larger collocation time window than 5 min would have produced less con- 1057 
sistency with CM4A for fraction correct. Imager VZA also has some impact on cloud frac- 1058 
tion bias, particularly at night. VZA and time windows are less important for cloud phase 1059 
and height assessment, except for thin cirrus at night. As seen in [19], the CALIOP detec- 1060 
tion resolution affects the bias.  1061 

- Daytime CV1S cloud detection is as good or better than several other operational 1062 
algorithms. At night, the accuracies are comparable overall with the other methods. None 1063 
of the operational approaches are as accurate as a new machine learning technique for 1064 
cloud detection.  1065 

- Supercooled liquid water clouds are properly diagnosed 96% of the time during the 1066 
daytime. At night, they are correctly identified in 75% of the cases. CV1S cloud phase 1067 
accuracy overall is comparable to that from several operational methods but is slightly 1068 
less than that from a new neural-net based method.   1069 

- Liquid water cloud top heights are less biased during the daytime than at night. For 1070 
single-layer clouds, the nocturnal bias is 0.2 km. Further research is need to assess that 1071 
day-night difference. The transition of a surface-anchored lapse rate to a reanalysis tem- 1072 
perature profile in assigning height to a given cloud temperature is responsible for under- 1073 
estimating cloud top height for many altostratus clouds.  1074 

- Ice cloud top heights are underestimated in the tropics partially because CV1S con- 1075 
fines the top to the tropopause level. That level is poorly determined in the tropics, and is 1076 
set near the bottom of the tropical transition layer. Retrievals that initially might place the 1077 
cloud higher are overwritten with the tropopause altitude, underestimating the top 1078 
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altitude of many clouds above 15 km. Other factors affecting the height retrieval, espe- 1079 
cially during daytime, are low-level clouds underneath both midlevel and high clouds.  1080 

- Because cloud optical depth, effective temperature, effective hydrometeor radius, 1081 
and phase are determined simultaneously, selecting the correct phase impacts the effec- 1082 
tive temperature. Inaccurate phase selection thus affects cloud-top height estimates, even 1083 
in the absence of multilayered, multiphase clouds. Cloud altitude is overestimated signif- 1084 
icantly when liquid clouds are interpreted as ice clouds. The opposite effect is found for 1085 
ice clouds classified as water. There is minimal dependence of this effect on the time of 1086 
day.  1087 

- CV1S cloud top height uncertainty overall is very similar to or better than several 1088 
operational algorithms, but again, fails to match the accuracy of an experimental machine 1089 
learning technique.                        1090 

The CERES VIIRS Edition 1 cloud parameters can be used with the same level of 1091 
confidence as their CERES MODIS predecessors, providing a reliable climate data record. 1092 
Yet the accuracy of that record can be enhanced. This study has elucidated several areas 1093 
for improvement in the algorithms. Reducing uncertainties in some parameters, such as 1094 
CTH, can be accomplished by altering some of the physical and empirical components of 1095 
the retrieval code. Further steps forward for other parameters may require a different ap- 1096 
proach. The comparisons here have confirmed that artificial intelligence techniques can 1097 
also dramatically decrease errors in cloud detection, phase selection, and height determi- 1098 
nation. Combining physical and machine learning retrievals in the future may be optimal 1099 
overall for substantially advancing the characterization of clouds from passive satellite 1100 
imagery for radiation analyses and other applications. 1101 
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