Radiative transfer in nonuniformly refracting
layered media: atmosphere—ocean system

Zhonghai Jin and Knut Stamnes

We have applied the discrete-ordinate method to solve the radiative-transfer problem pertaining to a
system consisting of two strata with different indices of refraction. The refraction and reflection at the
interface are taken into account. The relevant changes (as compared with the standard problem with a
constant index of refraction throughout the medium) in formulation and solution of the radiative-transfer
equation, including the proper application of interface and boundary conditions, are described.
Appropriate quadrature points (streams) and weights are chosen for the interface-continuity relations.
Examples of radiative transfer in the coupled atmosphere—ocean system are provided. To take into
account the region of total reflection in the ocean, additional angular quadrature points are required,
compared with those used in the atmosphere and in the refractive region of the ocean that communicates
directly with the atmosphere. To verify the model we have tested for energy conservation. We also
discuss the effect of the number of streams assigned to the refractive region and the total reflecting region
on the convergence. Our results show that the change in the index of refraction between the two strata
significantly affects the radiation field. The radiative-transfer model we present is designed for
application to the atmosphere—ocean system, but it can be applied to other systems that need to consider

the change in the index of refraction between two strata.

1. Introduction

The discrete-ordinate method has been satisfactorily
used to solve the radiative-transfer problem in verti-
cally inhomogeneous media. For example, it has
been applied to multilayered media with anisotropic
scattering,! but there has been no need to consider
changes in refractive properties because optically
only one medium with a constant index of refraction
was considered. Today, however, more and more
applications in oceanography and climate-change stud-
ies have involved two or more subsystems with
different indices of refraction. For such situations
the change in the index of refraction across the
interface between the two media has to be taken into
account. Examples are radiative transfer within the
atmosphere—ocean system and the atmosphere—sea
ice—ocean system.

A number of models, most of them based on the
Monte Carlo technique, have been developed and are
used for various studies of radiative transfer in the
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atmosphere ocean system.” The main purpose of
this paper is to extend the discrete-ordinate method,
which has proved to be a very efficient method for
solving radiative-transfer problems in the atmo-
sphere,®10 to a coupled system with a discontinuous
interface of the refractive index. The principal diffi-
culty encountered in attempts to model radiative
transfer throughout such a system with the discrete-
ordinate method originates from the bending or
refraction of radiation across the interface between
the media of different refractive properties. The
Fresnel refraction and reflection will affect the form
of the radiative-transfer equation and the particular
solutions, and the continuity relations at the inter-
face are totally different from the nonrefractive case.
We will take the atmosphere—ocean system as an
example and assume a flat air-ocean interface pres-
ently. Also, the atmosphere and the ocean are both
assumed to be vertically stratified so that the optical
properties depend only on the vertical coordinate.
To account for the vertical inhomogeneity, the atmo-
sphere and the ocean can be divided into any suitable
number of horizontal layers, as required to resolve
the vertical structure of the optical properties of each
medium.

In the following section, we first derive the formula-
tion of the radiative-transfer equation, which is differ-
ent from that for the uniformly refracting medium,
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for a coupled system. We then select an appropriate
quadrature and apply the discrete-ordinate method to
find a general solution which is suitable for every
layer. Finally we discuss the formulation and proce-
dure required to apply the interface and boundary
conditions to such a coupled system. In Section 3,
some model-consistency tests are performed, the
importance of proper stream distributions in the
Fresnel cone and the total reflection region in the
ocean to achieving fast convergence is discussed, and
the effect of scattering asymmetry on convergence is
studied. Following that, some results from applying
this formalism to the atmosphere—ocean system are
presented, including comparisons performed with
and without the inclusion of the effects arising from
the change in the index of refraction at the air-ocean
interface. Those comparisons demonstrate the im-
portance of including this change in the refractive
index.

2. Equations and Solutions

Formulation and solution of the radiative-transfer
equation for the atmosphere—ocean system have a lot
in common with that for the atmosphere only. In
this paper we emphasize the differences. Therefore,
only solar radiation is considered, because it is strongly
affected by the refractive-index change and exhibits a
much different transfer process in the coupled system.
We will neglect the thermal emission and give the
homogeneous solution directly, as it is basically the
same as that which is obtained when considering only
the atmosphere.

Figure 1 illustrates the radiative-transfer model for
the atmosphere—ocean system schematically. In the
ocean, region I is the total-reflection region. Region
IT is the refraction region. The width of each region
depends on the relative index of refraction of the two
media. The downward radiation distributed over 2w
steradians in the atmosphere will be restricted to a
cone (less than 2w steradians) after being refracted
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Atmosphere

" 1
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Fig.1. Schematicdiagram of the coupled-radiative-transfer model
for the atmosphere—ocean system.
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across the interface into the ocean. Photons in
region II of the ocean may be scattered into region I.
Note, however, that photons in region I of the ocean
cannot reach the atmosphere directly and vice versa.
Communication between the atmosphere and region
I must occur through the scattering process between
region I and region II in the ocean. All these charac-
teristics for the coupled system can be described with
a properly formulated radiative-transfer equation
and appropriate implementation.

A. Basic Equations

The equation describing the radiation transfer
through a plane-parallel medium is given by%11

dI T’ ) ¢

R T - CAMP Nl
where I(7, 1, &) is the specific intensity (radiance) at
vertical optical depth T (measured downward from the
upper boundary) in direction (., ¢) (u is the cosine of
the polar angle, which is positive with respect to the
upward normal, and ¢ is the azimuthal angle). The
source function is

( ) ()f If ( ' ,)
T, . — — T’“’d)’ll’d)
0 -1

XI(m, p', ')dp’ + Q(r, w, 9),  (2)

where o(r) is the single-scattering albedo,

p(7, p, &, n', ¢') is the phase function, and Q(t, p, ¢)

represents the actual internal source. The solar-
beam source in the atmosphere can be expressed as

Qair('rr B, ¢) = ZL,:,)FOP(T: 2 d): — o, d)O)eXp(_T/p'O)
+ %%ﬂ'FOR(_uO: n)p(T, B, b, Ko, (bO)
X exp|—(27, — 7)/1ol; (3)

where | is the cosine of the solar zenith angle and is
positive, ¢ is the azimuthal angle for the incident
solar beam, and F) is the solar-beam intensity at the
top of the atmosphere. Here n is the index of
refraction of the ocean relative to the atmosphere,
and 7, is the total optical depth of the atmosphere.
The first term in Eq. (3) represents the contribution
from the downward, incident beam source, while the
second term represents the contribution from the
upward beam source reflected at the atmosphere—
ocean interface because of the Fresnel reflection
caused by the change in the refractive index between
air and sea water. R(—g, n) is the ocean-surface
reflectance for the solar beam. In the ocean, the
source term is

ron("', My d)) = %;2 Eﬁ;}FOT(_H‘O’ n)
X p(77 12 d)’ — Kons d’O)eXp(—Ta/p‘O)
X exp[—(*r - Ta)/u'On]s (4&)



where T(—pg, n) is the transmittance through the
interface, and pg, is the cosine of the solar zenith
angle in the ocean, which is related to .y by the Snell
law:

) =1 - (1 - p?)/n2 (4b)

Expansion of the phase function p(r, cos ©) in a series
of 2N Legendre polynomials and the intensity in a
Fourier cosine series’-1!

Ron(Mo, 7
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p(7; 1, &, ', ¢') = p(; cos O©)
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which leads to the replacement of Eq. (1) with 2N

independent equations (one for each Fourier compo-
nent):

[~}
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where O is the scattering angle, P;/*(w) is the associ-
ated Legendre polynomial, gy(t) is the expansion
coefficient, and @™(r, ) is the mth Fourier compo-

nent of the beam source. Inthe atmosphere it is
Quix™(7, 1) = Xo™(r, p)exp(—7/ o)
‘!‘ Xo1™ (7, w)exp(t/ o), (6¢c)
where
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The source term in ocean can be expressed as

ronm(T’ l-") = XOZm(T’ exp T/P*On) (Gg)
where
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B. Quadrature Rule And Discrete-Ordinate Approximation

The discrete-ordinate approximation to Eq. (6a) is
obtained by replacing the integral in Eq. (6a) by a
quadrature sum, thus transforming the integro-
differential Eq. (6a) into a system of coupled differen-
tial equations. Thus, for each layer in the atmo-
sphere, we obtain!

dIm(T’ p’ia) G
pe—g = I ) = X wtD(r, uf, )
Jj=-N1
Jj=0
v (T’ !“'J ) Qairm(T’ l-l'ia)’
i=i1...,iN1, (N
and similarly, for layers in the ocean, we find
dIm(T’ “’io) X
io.—=ImT’ io - woD T, ,o’
B dr ( Bi°) j=ZN2 /i (7y i l-ly)
j=0
X I™(7, 1°) = Qoea™(T, 1°),
i= =1, , =Ny, (8)

where p2, w and p?, w? are quadrature points and
weights for the atmosphere and the ocean, respec-
tively, and p_; = —p;, w_; = w;. Note that instead of
using a constant number of streams for each layer as
is usual, we have used different numbers of streams
for the atmosphere and the ocean (2N; and 2N,,
respectively). In region II of the ocean, which com-
municates directly with the atmosphere, we use the
same number of streams (2N;) as in the atmosphere.
This properly accounts for the shrinking caused by
refraction of the angular domain in the ocean. In
region I of the ocean, where total reflection of photons
moving in the upward direction occurs at the ocean—
atmosphere interface, we invoke additional streams
(2N5 — 2N;) to accommodate the scattering interac-
tion between regions I'and I in the ocean. Although
there are many options for choice of quadrature, this
choice will strongly affect the application of interface-
continuity conditions and the accuracy of the solution.

The quadrature used here is essentially the same as
that adopted by Tanaka and Nakaj ima.l% - The double
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Guass quadrature rule is used to determine the
quadrature points and weights, p2andws (i =1,. . .,
N,), in the atmosphere, as well as the quadrature
points and weights, n° and w? (i = Ny + 1, ..., Ny),
in the total-reflection region of the ocean. The
quadrature points in the Fresnel cone of the ocean are
obtained by simply refracting the downward streams
in the atmosphere (p1%, . . ., uy,), into the ocean.”!3
Thus, in this region, w2 is related to w,® by the Snell
law,

pe = S(we) = VI - [1 - (W PI/m2, i=1,2,..

Ny,
9)

and from this relation, the weights for this region can
be derived as

wP = w? (——ds(u‘a)) = Mia we
£ T oy~ P8
i=1,2,...,N. (10)

The advantage of this choice of quadrature is that the
points are clustered toward p. = 0 both in the
atmosphere and in the ocean, and in addition, toward
the critical-angle direction in the ocean. This cluster-
ing gives superior results near these directions where
the intensities vary rapidly. Also, this choice of
quadrature will simplify the application of the inter-
face-continuity condition and avoid the loss of accu-
racy incurred by the interpolation necessitated by
adopting the same quadrature (i.e., the same number
of streams) for the atmosphere and the ocean.

Finally, it is easy to show that the chosen quadra-
ture points and weights make phase-function renor-
malization unnecessary, so that energy conservation
is satisfied automatically, as pointed out first by
Wiscombe, 14

C. Solution

An accurate, reliable, and efficient method of obtain-
ing the solution of the homogeneous version of Egs.
(7) or (8) was presented by Stamnes and Swanson.1°
Following the same procedure, we give the homoge-
neous solution here.! In the atmosphere, (omitting
hereafter the superscript m denoting the Fourier
components), it is

N1
I(r, po) = 2 [C_;G—j(p*)exp(k, )

+ GGy ()exp(~ ko),

i==1 ..., %N, (11a)
and similarly, in the ocean
No
I(r, po) = ,21 [C_;G—(n")exp(kr)
+ C;Gy()exp(—k;7)),
i==*1,..., =N, (11Db)
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where k; and G; are eigenvalues and eigenvectors,
respectively, determined by solving an algebraic eigen-
value problem, and C; and C_; are unknown constants
of integration, to be determined by the application of
boundary and continuity conditions as discussed be-
low.

As for the particular solution, in the atmosphere it
can be expressed as

Ulr, 1) = Zo(p*)exp(—7/ 1) + Zoi(pn:*)exp(r/ o),
(12a)
wherei = 1, 2,. .., *N;. The coefficients Zy(p2)

and Zy;(n) are determined by the following system of
linear algebraic equations:

N1 a
"
'—21\/ (1 + 'L_Jo)sij - wD(r, uf, l‘fja)}zo(lhja)
J}#O 1
= XO(T’ l“"ia): (12b)
N p‘g
._% (1 + u—JO)Sij - wiD(r, us, l-'*ja)}ZOI(P«ja)
J}#O 1
= Xoi(7, %).  (12¢)

The particular solution in the ocean can be expressed
as

U(r, 1) = Zog(n)exp[—7/on(io, n)],  (13a)

where i = %=1, =2, ..., =Ny, and Zy(n,°) is deter-
mined by the following system of linear algebraic
equations:

N2

>

Jj=-Nz
Jj=0

w°
(1 + p_;n)aij — wPD(7, u\ 1°) | Zoo(1°)

= Xos(T, 1°).  (13b)
The general solution is just the sum of the homoge-
neous solution and the particular solution.

D. Conditions for Boundary, Continuity, and
Atmosphere-Ocean Interfaces

The vertically inhomogeneous medium is represented
by multiple, adjacent homogeneous layers in the
atmosphere and the ocean, respectively. The solu-
tions derived previously will be used in each layer.
We assume that the system consists of L, layers of
atmosphere and L, layers of ocean. Then we may
write the solution for the pth layer as

N1
L(r, o) = 2} [C_ipG-jp(n®)explk;,r)
=

+ CpGp(p)exp(—kjp®n)] + Uy, 1),

,*N;andp < L,, (14)

i==1,...



Ny

L, w?) = 2 [CjpGjp(n?)expl;p°T)

Jj=1

+ C)'pGjp(l“'io)exp(_kjpoT)] + Up(Ta p‘io):

i = il,...,iNZandLl <p SL1+L2.
(15)

There are 2N, X L; + 2N, X Ly unknown coefficients
Cjp in Egs. (14) and (15). They are determined by
three factors: the boundary conditions to be applied
at the top of the atmosphere and the bottom of the
ocean; the continuity conditions at each interface
between layers in the atmosphere and ocean; and
finally the reflection and refraction occurring at the
atmosphere—ocean interface, where we require Fres-
nel’s equations to be satisfied.

These conditions are implemented as follows: At
the top we require

11(0’ _“'ia) = Iw(_u'ia); i= 1) e 9Nl3 (163)
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at the interfaces between atmospheric layers we
require

Ip(Tp’ p'ia) = Ip+1(7pa 'J‘ia),
i==1,...,xN,andp=1,...,L; — 1,
(16b)

at the interface between the atmosphere and the
ocean we require

ILI(Ta’ ”’ia) = ILI(Ta: —p'ia)R(—p*ia) n)
+ [IL1+1(T¢1, IJ*io)/nz]T('l'p‘io’ n):
i=1,2...,Ny, (16¢)
IL1+1(Ta1 _“"io)/nz = [IL1+1(Ta; p’io)/nZ]R("-“‘io, n)

+ ILI(Ta’ —”'ia)T(_u'ia: n):

i=1,2,...,Ny, (164d)
Just Above The Interface
w 2 2r 12
O
b4
<
a
<
o
14
oL . v . Ol 10
1.0 1.5 2.0 1.0 1.5 2.0
REFRACTIVE INDEX n
Optical Depth = 2.00 (Bottom)
w 2 2r 12
&)
Z
<
o
<
o
14 _—
/"‘/—
Ol r o0 P TR 0
1.0 1.5 2.0 1.0 1.5 2.0

REFRACTIVE INDEX n

Fig.2. Variation of irradiances with the relative index of refraction at several locations for isotropic scattering, incident flux Fo = 1.0, with
incident zenith angle 8y = 30°, bottom-surface albedo = 1.0, 7, = 1.0, and * = 2.0. For the absorption case, the only difference from the
conserevative case is in the single-scattering albedo, w = 0.9, in the lower medium.
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IL1+1(Ta7 _p“io) = IL1+1(Ta) p‘ia)7

i=N;+1,...,Ny (16e)

at the interfaces between ocean layers we require

Ip(Tps “'ia) = Ip+1(Tp, l-"io):

i=i‘1,...,'—"N2, p=L1+1,...,L1+L2_1;

(16f)
and finally at the bottom boundary we require

i=1,2,...,N, (16g)
We define R(xp;, n) and T(*p,;, n) as the specular
reflectance and transmittance, respectively, of the
invariant intensity I/n.,.2, where n,, is the absolute
index of refraction at the location where I is measured.
The minus sign applies for the downward intensity,
and the positive sign for the upward intensity.

IL1+L2(T*r p-'io) = Ig(“’io)9

Formulas for R and T can be derived from the basic
Fresnel equations. The results are

ia__n io2 io_n ia2
e R e

e+ np we +nps

1
R(_“'ia’n) =§

R(+p"io’ n) = R(_p‘ia’ n):

1 2 1 2
+
(H'i“ + nP«io) (I-’«io + nm“)

(17c)

(17b)

T(-pon)=2npspe

T("’“‘io: n) = T(_ (T8 n) (17d)
Equations (16c) and (16d) ensure that, by satisfying
Fresnel’s equations, the radiation fields in the atmo-
sphere and the ocean are properly coupled through
the interface, whereas Eq. (16e) represents the total
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Fig. 3. The effect of stream combinations within the refractive region and the total reflective region (represented by the number ratio) on
the convergence for the Henyey—Greenstein scattering-phase function, with asymmetry factor g = 0.7. Other input parameters are the
same as those for the conservative case in Fig. 2. Shown in the panels are the upward irradiances at the tops of the slabs and their

comparison with the Benchmark irradiance incident on the system.
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reflection in region I in the ocean. The total optical
depth of the atmosphere and ocean is denoted by 7* in
Eq. (16g). IL.(—p?) is the intensity incident at the
top of the atmosphere, and I,(p.°) is determined by the
bidirectional reflectance of the underlying surface at
the bottom of the ocean.! Substitution of Eqgs. (14)
and (15) into Eqgs. (16a)—(16g) leads to a system of
2N; X L; + 2N, X L, linear algebraic equations for
the same number of unknown coefficients, the C.;,.
Matrix inversion of this system of equations yields
the desired coefficients and thereby completes the
solution for the coupled atmosphere—ocean system.
Once we have obtained the solutions for each (and all)
Fourier components using Egs. (14) and (15), we may
compute the intensity (radiance) at the quadrature
directions from Eq. (5). Irradiances (fluxes) and
mean intensity can now be easily computed from the
zero-order Fourier component of the intensity given
above by using the same quadrature rule to convert
integrals into simple summations.’

3. Some Results and Discussion

A. Model Test

Before considering an actual application, we shall
discuss a number of consistency and convergence
tests aimed at checking the basic soundness of the
solution. First we consider a conservative situation,
in which case there is no absorption at all in the whole
system. In another words, we replace the atmo-
sphere and the ocean with two strata consisting of
media with different refractive indices, but without
absorption. At the bottom of the lower stratum, we
assume that the surface is totally reflecting. The
variation in irradiances with the relative index of
refraction n at four particular levels is shown in Fig.
2. The effect of adding some absorption is also
illustrated. The net irradiance is defined as the
difference between the total downward irradiance
and the total upward irradiance. In the conservative
case, the net irradiance is zero everywhere, consistent
with the energy-conservation requirement, so that
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Fig. 4. Similar to Fig. 3 but showing the effect of scattering asymmetry on the irradiance computation (for only one group of stream

combinations).
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the total upward irradiance overlaps with the total
downward irradiance everywhere. The total down-
ward and upward irradiances increase rapidly with
increasing n in the lower stratum, but not in the
upper stratum because of energy trapping, as dis-
cussed by Stavn ez al.15 and by Plass et al.13 Figure 2
also shows that the variation in the irradiances with n
is very sensitive to the absorption in the lower
medium. A single-scattering albedo of 0.9 in just the
lower medium leads to a drastic reduction of the
irradiance changes versus n, as compared with the
conservative case. At the bottom, the total upward
irradiance overlaps with the total downward irradi-
ance for this absorptive case and owes to the assumed
bottom-surface albedo of unity. The results shown
in Fig. 2 pertain to isotropic scattering, but we have
verified by computations that the choice of phase
function and optical depth does not significantly
affect the general behavior of the irradiances indi-
cated above, for the case of an absorbing lower
medium, and there is no effect for the conservative
case.

As just discussed, in the conservative case with a
surface albedo of unity, the upward irradiance should
equal the total downward irradiance at the top. This
suggests that for the conservative case, the incident
downward irradiance, which is equivalent to pqFj,
can be taken as a benchmark for the total-upward-
irradiance computation at the top. Figure 3 shows
the computed upward irradiances at the top by using
different streams and their comparison with the
benchmark with the same conditions as in Fig. 2, but
with an asymmetry factor of 0.7 for the Henyey—
Greenstein phase function used here. The number

2000

1500

1000

Downward Irradiance (wott/m?/um)

500

] Val
3.384 Y 0.50 0.60 0.70 0.80
Wavelength(um)
Fig. 5. Spectral distributions of downward irradiances at the top
of the atmosphere, just above the ocean surface (+0 m), just below
the ocean surface (—0 m), and at several depths in the ocean for a
model of a clear midlatitude atmosphere and pure sea water, with a

solar zenith angle 8y = 30°.
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ratio represents 2N,/(2N, — 2N,), the number of
streams adopted within the refractive region divided
by those adopted for the total reflective region. The
results indicate that although an increase in the
number of streams will eventually increase the accu-
racy, the convergence speed depends strongly on n for
a given combination of streams in the two regions.
For example, the upper left panel of Fig. 3 indicates
that the combination of 4/2 (four streams for region
IT and two streams for region I) will produce the best
accuracy for smaller values of n (approximately 1.1 to
1.2). The combination of 4/4 is best for n between
1.3 and 1.5, while the combination of 4/6 is better for
largern. Furthermore, as demonstrated in the other
three panels, when the number of streams is in-
creased in both regions, the overall accuracy in-
creases as it should. Our computations also show
that the convergence behavior indicated above is true
at any level. Generally, for larger n, to obtain opti-
mal results we need to assign more streams to the
total reflective region because it becomes wider. The
quantitative relation between this optimum stream
ratio and » is unknown.

In addition to the distribution of quadrature points
between the two regions, the convergence speed is
also strongly dependent on the asymmetry of the
phase function. For the Henyey—Greenstein phase
function, which depends only on the asymmetry
factor g, Fig. 4 shows that for smaller asymmetry
factors (i.e., less anisotropy), fewer quadrature points
are needed to attain good accuracy. We have adopted
the delta-M transformation,!? which has been shown
to optimize the performance of the model and to
improve the accuracy for strongly forward-peaked
scattering.
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Fig. 6. Similar to Fig. 5 but showing the upward irradiances.



B. Application for the Atmosphere-Ocean System

The comprehensive model described above was ap-
plied to the atmosphere—ocean system. We adopted
the profile of the midlatitude summer atmosphere
developed by McClatchey et al.1® and divided the
atmosphere into 24 layers. For simplicity, only pure
atmosphere and pure sea water are considered here.
Therefore, we may adopt the Rayleigh scattering-
phase function for both the atmosphere and the
ocean. The optical properties of the clearest ocean
water are taken from Smith and Baker.1?” Because of
the homogeneity of pure sea water, it is not necessary
to use multiple layers in the ocean even though our
model can easily accommodate an arbitrary number
of layers in the ocean. By assuming a solar zenith
angle of 30° and a relative refractive index for the
ocean of 1.33 (neglecting for simplicity the wave-
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length dependence here), we computed downward
and upward irradiances at the top of atmosphere, just
above and just below the ocean surface, as well as at
several depths in the ocean, as shown in Figs. 5 and 6.

In Fig. 7 we show the computed reflectance of the
ocean surface for several solar zenith angles and
compare it with the result obtained when the effects
of refraction are ignored. The differences in the
upward and downward irradiances at the ocean sur-
face for having included and neglected refraction are
also shown. The results indicate that underestima-
tion of the reflectance would occur for most wave-
lengths if the change in index of refraction across the
interface between the ocean and the atmosphere is
ignored. As the solar zenith angle increases, the
specular reflection, caused by the difference in the
indices of refraction between the atmosphere and the
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Fig. 7. Spectral distribution of ocean-surface reflectance for considering refraction and neglecting refraction, and for several solar zenith

angles.
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Also shown are the downward and upward irradiance differences at the ocean surface when refraction is considered and neglected,
The same atmospheric and oceanic models used in Fig. 5 are used here.
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ocean, contributes more to the total reflectance of the
ocean surface, and consequetly more to the upward
irradiance at the ocean surface. Therefore, for larger
solar zenith angles, the discrepancy between the
reflectance computed with and without refraction
becomes larger.

Figure 8 shows the distribution of downward irradi-
ance and upward irradiance with height in the atmo-
sphere and with depth in ocean for the same atmo-
sphere and ocean model used above and for a
wavelength of 500 nm. For comparison, correspond-
ing results obtained by neglecting the refraction are
also displayed. There is considerable interest in
energy absorption as a function of altitude in the
atmosphere or of depth in the ocean, because this
absorbed energy drives the atmospheric and oceanic
circulation. Because the absorbed energy within
each layer is proportional to the mean intensity (the
same as the total scalar irradiance, defined by Morel
and Smith,!8 divided by 4w) in that layer, we show in
Fig. 9 the mean intensity versus both the height in
the atmosphere and the depth in the ocean. Also
shown are the same results obtained by ignoring
refraction and the relative error, | (Zresr — Inorefr) /Trete| X
100. Wenote that the relative error may increase up
to 20% just below the ocean surface. Although the
radiation field is large in the deep ocean, it is already
significantly attenuated there.

Figure 10 shows the azimuthally averaged inten-
sity distribution just above and just below the ocean
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Fig.8. Distributions of the downward and the upward irradiances
with height in the atmosphere and depth in the ocean, the results
of neglecting refraction, and the relative deviation. 0y = 30°, A =

500 nm.
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interface. Again results obtained by ignoring refrac-
tion are also displayed. The results indicate that the
refraction significantly alters the radiative-intensity
distribution. Justbelow the ocean surface, the down-
ward-intensity discontinuity position shifts from the
horizontal direction for the case of no refraction, to
the critical-angle direction when refraction is included.
The refraction also significantly changes the upward
radiation field just above the ocean surface. Knowl-
edge of the intensity distribution here is important
for correct interpretations of intensity measurements
in remote-sensing applications.

All of the quantities computed above for Figs. 5-10
are calculated to bée dccurate to within 1%. To
achieve this accuracy, a stream ratio of 6/10 (6
streams in the atmosphere, 10 streams in the ocean)
was applied in the calculations for Figs. 5-9, while a
ratio of 40/70 is used for Fig. 10, but only for the
purpose of providing enough points to plot a smoother
curve.

The present model has recently been compared
with six other models that have approached the
radiative-transfer problem in the atmosphere—ocean
system with different methods.!® A typical oceanic
phase function with strongly forward scattering was
adopted there. Our results calculated with the
delta-M transformation agreed very well with the
results from the other models. The computer re-
sources required . for calculation among the models
were also compared, showing that our model is
especially efficient for the computations of irradi-
ances and azimuthally averaged radiances.

4. Conclusion

We have developed a comprehensive methodology,
based on the discrete-ordinate method, for solving the
radiative-transfer equation pertinent for a system
consisting of two strata with different indices of
refraction. The method is well suited to providing
consistent solutions of the radiative-transfer problem
for the coupled atmosphere—ocean system. The re-
fraction and total reflection at the interface of the two
strata have been taken into account by assigning
different numbers of angular quadrature points (dis-
crete ordinates or streams) in the atmosphere and the
ocean. Thus the interpolation at the interface of two
media is entirely avoided, and the radiation field in
both the atmosphere and the ocean can be efficiently
solved at once. The vertical inhomogeneity of the
atmosphere and the ocean can be accounted for by
dividing each stratum into a suitable number of
homogeneous layers so that the optical properties
may be regarded as constant within each layer, but
are permitted to vary from layer to layer.

Test results show that the solution conserves en-
ergy and is both reliable and efficient. The accuracy
depends on the number of streams utilized to make
the angular dependence discrete. Good accuracy for
irradiance and mean intensity are obtained with just
a few streams. Preliminary results of the applica-
tion to the pure atmosphere—ocean system show that

the refraction significantly affects the radiation field
and radiative-energy absorption in both the atmo-
sphere and the ocean. A more realistic quantifica-
tion of the radiation field in the atmosphere and
ocean environments can be simulated when actual
optical properties of the atmosphere, including clouds
and aerosols, and of the ocean, including particulates,
versus depth are available. The radiative-transfer
model presented in this paper provides a means for
estimating light reflection and transmission, as well
as rates of warming and cooling, and for studying the
radiative interaction between the atmosphere and the
ocean. The model could, if so desired, be extended to
deal with changes in the index of refraction between
all layers instead of just the atmosphere—ocean inter-
face. Such an extension would make it feasible to
study radiative transfer within media in which the
index of refraction changes continuously throughout
the medium. Possible future extensions of the dis-
crete-ordinate method presented here include (1) the
simulation of ocean-surface roughness, (2) the compu-
tation of inelastic-scattering effects to treat phenom-
ena such as Raman scattering, and (3) the consider-
ation of polarization.

Z. Jin thanks Fé Seymour for help with the English
language. This work was supported by the National
Science Foundation through grant DPP92-00747
and the Department of Energy through contract
091574-A-Q1.
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